These issues are thoroughly discussed in a nice paper by Barry Mazur, "When is one thing equal to some other thing?"
http://www.math.harvard.edu/~mazur/preprints/when_is_one.pdf — fishfry
The fact that the algebraic closures are not yoked together by a specified isomorphism is the source of some theoretical complications at times, while the fact that their automorphism groups are seen to be isomorphic via a cleanly specified isomorphism is the source of great theoretical clarity, and some profound number theory.
Yeah, the fact that automorphism groups are always isomorphic is a key ingredient in Galois theory. That is undoubtedly the "profound number theory" that he is referring to.
;-)
The Peano axiom approach calls up the full propositional apparatus of mathematics. But the details of the apparatus are kept in the shadows : you are required to “bring your own” propositional vocabulary if you wish to even begin to flesh out those axioms. The Peano category approach keeps all this in the dark: no mention whatsoever is made of propositional language.
Staying clear of the language of first-order logic may temporarily spare you from hitting the wall of Gödel's incompleteness theorems. It is the use of "∀" and "∃" that ransacks everything. Still, I do not see how he will manage to keep avoiding the use of language, and especially, existential quantifiers. Up till now, his Peano category approach has managed to somehow avoid their explicit use, but I am not sure that it also manages to avoid their implicit use.
The Peano axiom approach requires — at least explicitly — hardly any investment in some specific brand of set theory. At most one set is on the scene, the set of natural numbers itself. In contrast, the Peano category approach forces you to “bring your own set theory” to make sense of it.
Declaring the set theory in use to be some kind of free variable, or at least a template placeholder, is indeed interesting. However, how will he manage to not accidentally bring a particular set theory through the back door? All you need to do, is to accidentally rely on a theorem that rests on a particular set theory, in order to become beholden to it.
When we gauge the differences in various mathematical viewpoints, it is a good thing to contrast them not only by what equipment these viewpoints ultimately invoke to establish their stance, for ultimately they may very well require exactly the same things.
Ha ah! Exactly what I thought!
Representing one theory in another. If categories package entire mathematical theories, it is natural to imagine that we might find the shadow of one mathematical theory (as packaged by a category C) in another mathematical theory (as packaged by a category D). We might do this by establishing a “mapping”. We call such a “mapping” a functor from C to D.
Yes, I need a functor right now, between grammar classes of formal languages (which are always axiomatic theories). The PCRE regular language engine has custom extensions that allow it to express the grammar of context-free languages (EBNF) and match their sentences. So, now I want a functor between PCRE and EBNF; which are widely claimed to be isomorphic. So, does he know something about functors that would drastically simplify the job of producing such PCRE<-->EBNF functor? Otherwise, it may be a lot of work ... too much for me, in any case ...
Let X, X′ be objects in a category C. Suppose we are given an isomorphism of their associated functors η:FX∼=FX′. Then there is a unique isomorphism of the objects themselves,
Interesting and intriguing. Unfortunately, he does not mention the proof, even though he says it is an easy proof.
An object X of a category C is determined (always only up to canonical isomorphism, the recurrent theme of this article!) by the network of relationships that the object X has with all the other objects in C.
And you usually do not even need the object's relationship to ALL other objects. A few is usually enough to know what the object must be.
A functor F: C−−→D from the category C to D is called an equivalence of categories if there is a functor going the other way, G:D−−→C such that G·F is isomorphic to the identity functor from C to C, and F·G is isomorphic to the identity functor from D to D.
If anything that you can express in ZFC, can be expressed in combinatory logic, and the other way around, then there would be a equivalence functor between both categories. Then, this equivalence functor is also an algorithm, i.e. some kind of function that accept set-theoretical expressions and translates them in combinatory-logic ones. Has anybody ever implemented anything like that?
Is 5 mod 691 to be thought of as a symbol,or a stand-infor any number that has remainder 5 when divided by 691,or should we take the tack that it(i.e.,“5 mod 691”)is the (equivalence) class of all integers that are congruent to 5 mod 691?
Well, in my own experience, "5 mod 691" is just "5" in a system that happens to have as system parameter maxint=690. We do not really care about the system parameter particularly much, because everything we do, stays inside that system anyway. In my opinion, the choice of 691 would only matter when you simultaneously deal with multiple systems that could each have different parameters. Still, I have never run into that practical situation. Another reason why it does not matter, is because this system parameter will usually be relatively large. However, it will not be too large either, because the fact that numbers wrap around that maximum boundary has a desired obfuscating effect. It nicely ransacks monotonicity. So, 232+541 = 82 (within mod 691). So, you can perfectly add up two large numbers and get a smaller one. That is not a very strongly obfuscating effect, but it still helps in cryptography.
This newer vocabulary has phrases like canonical isomorphism,“unique up to unique isomorphism”, functor, equivalence of category and has something to say about every part of mathematics, including the definition of the natural numbers.
I also believe that category theory, i.e. general abstract nonsense, is the true flagship of mathematics. Unfortunately, its theorems do not (yet) have direct applications (such as in cryptography), that I know of.
The categorical vocabulary itself, however, seems to be spreading like wildfire.