The paradox of Gabriel's horn. In philosophical terms, since all objects are spatial and subject to one or another type of geometry, we have to say that objects are finite in form and infinite in content. To be perfectly honest when contemplating a ball or a cup will lead to this conclusion. There are, I admit, many types of geometry, and if someone finds a way to explain "the spatial" in a way that is comprehensive and avoids paradox, I am all ears. (I like how non-Euclidean geometry is on an infinite curve that revolves back into compactness. The weirdness of it gives me a faint hope that Zeno's paradox could be solved, but the final result might be way over my head)