In this case you're in safehouse 1 if not tails yesterday and not tails today and you're in safehouse 2 if either tails yesterday or tails today. Obviously the latter is more likely. I think only talking about the preceding coin toss is a kind of deception. — Michael
The original Sleeping Beauty problem does indeed hinge on a single coin toss, but it's crucial to understand the unique nature of this coin toss within the context of the experiment. When we consider the result of 'the' coin toss, we're not considering a generalized coin toss in a vacuum; we're considering the specific toss that determined the course of the experiment that Sleeping Beauty currently finds herself in.
Sleeping Beauty's question - 'What is the probability that the coin shows heads?' - is not a generalized question about the inherent probability of a coin toss result. Instead, it's a targeted question about the outcome of the specific coin toss that dictated the structure of her current experience. Given this context, I argue that Sleeping Beauty is justified in updating her prior credence P(T) from 1/2 to 2/3.
Let's modify the safehouse example to more closely mirror the Sleeping Beauty problem. Imagine you are kidnapped and held hostage. The captor flips a coin only once. If the coin lands heads, you are blindfolded and transported to safehouse #1, held captive for one day, and then released. If the coin lands tails, you are taken to safehouse #2, where you're held for two days and then released. In the latter case, however, an amnesia-inducing drug is administered at the end of the first day, such that you forget the events of the day and wake up on the second day with no memory of the previous day.
Just like in the Sleeping Beauty problem, you are unable to distinguish between the first and second day of captivity in safehouse #2. Now, when you find yourself in a safehouse and try to guess the outcome of the coin toss, your best bet would be to assign a 1/3 probability to being in safehouse #1 (and hence the coin toss resulting in heads) and a 2/3 probability to being in safehouse #2 (and hence the coin toss resulting in tails). This is not a reflection of the inherent probabilities of a coin toss, but rather an acknowledgment of your unique epistemic position in the situation, and the contextual information you have access to as a captive. Your credence in each possibility is based on the number of ways in which you could find yourself in your current situation given the possible outcomes of the specific coin toss.
To further bolster the point, imagine that you find a hidden cellphone and have a brief window to send a text message to the police. However, due to character limitations, you can only provide the address of one of the two safehouses. Given your current epistemic position, would it not make sense to communicate the address of safehouse #2? This decision is based on your updated credence in the outcome of the coin toss: you believe there is a 2/3 chance you're in safehouse #2 and a 1/3 chance you're in safehouse #1. So, despite the inherent probabilities of a fair coin toss being 1/2 for each outcome, your unique context and the information you have access to lead you to favor safehouse #2 as the most likely location for your captivity.
Let us now consider the perspective of the police and the information available to them. If they have knowledge of the captor's coin-flip protocol, then prior to receiving any communication, they would have a 1/2 credence of the hostage being in either safehouse.
How does their epistemic position changes after they receive your message? I would argue that we now need to distinguish two cases.
In the first case, if the police have themselves provided the communication means in both safehouses, the message does not convey any new information about the coin toss nor about the hostage's location. Given that the hostage would have been equally likely to find and use the device in either location, the message itself doesn't change the police's prior beliefs.
In the second case, however, if the hostage independently finds a way to communicate, the longer duration spent at safehouse #2 makes it twice as likely for the hostage to send a message from there. This makes a crucial difference. If a message is sent, the police now have evidence that is more likely to occur if the coin landed tails, which should update their credences accordingly, both for the location of the hostage and the result of the coin toss.
The message, in this context, acts as evidence that bears differently on the hypotheses of interest (the coin toss and the location), given the known differences in the likelihoods of being able to send the message from the two locations.
In case-1, since the hostage has an equal chance to communicate from either safehouse, the police are not able to update their credences based on the received message. Here, the police's prior beliefs remain the same, P(H) = P(T) = 1/2, and their strategy should reflect these priors.
In case-2, however, the hostage's ability to communicate is influenced by the duration of captivity. If they get a message, the police can update their beliefs because the message is more likely to be sent if the coin landed tails and the hostage was in safehouse #2 for longer. Their updated beliefs should be P(H) = 1/3, P(T) = 2/3.
Now, consider the question whether the police acting based on the hostage's updated credence rather than their own increases their chances of success, it seems that this depends on the case. In case-1, if the police act based on their own beliefs, they're expected to be right half the time. If they act based on the hostage's belief, they'd be misled half the time (when the coin lands heads). So, in case-1, the police need not update their credence.
In case-2, however, acting based on the hostage's beliefs (which coincide with the updated beliefs of the police if they consider the message as evidence) increases their chances of success. This is because the hostage's ability to communicate is correlated with the coin toss and their location, unlike in case-1. So, in case-2, the police are enabled to update their credence to align them with the hostage's.
The ambiguity stems from the fact that whether the police should act based on the hostage's belief depends on the specific circumstances of each case. A complete answer should specify the case under consideration and fully specify the epistemic perspectives of all the agents.
On edit: I foresee a possible objection to the previous discussion, particularly that it draws upon an analogy with a situation involving a communication device, which has no direct parallel in the original Sleeping Beauty problem. To address this, I propose another scenario that may mirror Sleeping Beauty's epistemic situation even more closely:
RevealLet's reconsider the safehouse scenario. Suppose the hostage finds an opportunity to escape. However, the nature of the obstacles he must overcome depends on the safehouse he's in: safehouse #1 is surrounded by a crocodile-infested moat, while safehouse #2 is surrounded by a forest filled with lions. While escaping, the hostage can carry either a large wooden plank (to bridge the moat) or a torch (to ward off the lions), but not both.
In this scenario, we can distinguish between two cases. In case-1, the opportunity to escape is equally likely for both potential outcomes of the coin toss. In this instance, when planning an escape, the hostage has equal odds of encountering either crocodiles or lions. Therefore, his credence in the coin having landed heads should be updated to 1/2, in light of the fact that he has an opportunity to escape.
On the other hand, in case-2, opportunities to escape are proportional to the time spent in a safehouse. In this situation, the hostage is twice as likely to encounter lions and should, therefore, choose to carry the torch.
Considering which of these two cases more closely mirrors the Sleeping Beauty problem, I argue in favor of case-2. The opportunities for the hostage to escape can be seen as opportunities for him to indirectly learn about the coin toss result. The correlations between tails and lions, and heads and crocodiles, both stand at exactly 1. Similarly, in the Sleeping Beauty problem, her credence in the coin toss resulting in tails corresponds directly to her credence in the likelihood of this result being revealed to her if she had the opportunity to confirm it at that moment. Each time Sleeping Beauty is awakened (or given an opportunity to express her credence), she is aware that such opportunities are twice as frequent if the coin landed tails. Therefore, being afforded such an opportunity is directly analogous to case-2 in the hostage scenario.