And I think it's even better to not consider days and just consider number of times wakened. So first she is woken up, then put to sleep, then a coin is tossed, and if tails she's woken again. Then we don't get distracted by arguing that her being asleep on Tuesday if Heads is part of the consideration. It doesn't make sense to say that she's asleep during her second waking if Heads.
With this reasoning I think Bayes' theorem is simple. The probability of being woken up is 1 and the probability of being woken up if Heads is 1. That she's woken up a second time if Tails is irrelevant. — Michael
Since the setup of the experiment doesn't even require that anyone look at the result of the toss before Monday night, nothing changes if the toss is actually performed after Sleeping Beauty's awakening. In that case the credences expressed on Monday are about a future coin toss outcome rather than an already actualized one. — Pierre-Normand
If so, this would suggest a highly unusual implication - that one could acquire knowledge about future events based solely on the fact that someone else would be asleep at the time of those events. — Pierre-Normand
Before being put to sleep, your credence in H was 1/2. I’ve just argued that when you are awakened on Monday, that credence ought to change to 1/3. This belief change is unusual. It is not the result of your receiving new information — you were already certain that you would be awakened on Monday.
...
Thus the Sleeping Beauty example provides a new variety of counterexample to Bas Van Fraassen’s ‘Reflection Principle’ (1984:244, 1995:19), even an extremely qualified version of which entails the following:
"Any agent who is certain that she will tomorrow have credence x in proposition R (though she will neither receive new information nor suffer any cognitive mishaps in the intervening time) ought now to have credence x in R."
It looks like you may have misinterpreted Elga's paper. He doesn't define P as an unconditional probability. In fact, he expressly defines P as "the credence function you ought to have upon first awakening." Consequently, P(H1) and P(T1) are conditional on Sleeping Beauty being in a centered possible world where she is first awakened. The same applies to P(R) and P(B1), which are conditional on you being in a centered possible world where you are presented with a ball still wrapped in aluminum foil before being given a tequila shot. — Pierre-Normand
To understand what P(R) entails, let's look at the situation from the perspective of the game master. At the start of the game, there is one red ball in one bag and two blue balls in the other. The game master randomly selects a bag and takes out one ball (without feeling around to see if there is another one). They hand this ball to you. What's the probability that this ball is red? — Pierre-Normand
Here, P(R|R or B1) is the probability that the ball you've just received is red, conditioned on the information (revealed to you) that this is the first ball you've received in this run of the experiment. In other words, you now know you haven't taken a shot of tequila. Under these circumstances, P(R) = P(B1) = 1/2. — Pierre-Normand
This scenario doesn't accurately reflect the Sleeping Beauty experiment. — Pierre-Normand
But your credence that you are in T1, after learning that the toss outcome is Tails, ought to be the same as the conditional credence P(T1|T1 or T2), and likewise for T2. So P(T1|T1 or T2) = P(T2|T1 or T2), and hence P(T1) = P(T2).
...
But your credence that the coin will land Heads (after learning that it is Monday) ought to be the same as the conditional credence P(H1|H1 or T1). So P(H1|H1 or T1)=1/2, and hence P(H1) = P(T1).
Combining results, we have that P(H1) = P(T1) = P(T2). Since these credences sum to 1, P(H1)=1/3.
I would like the halfer to explain why ruling out the Tuesday scenario doesn't affect their credence in the coin toss outcome at all. — Pierre-Normand
My current credence P(H) is 1/2, but if I were placed in this exact same situation repeatedly, I would expect the outcome H to occur one third of the time. — Pierre-Normand
Sleeping Beauty's calculation that P(H) = 1/3 doesn't hinge on her participation in the experiment being repeated. She's aware that if the coin lands heads, she will be awakened once, but if it lands tails, she will be awakened twice. If we run this experiment once with three participants, and all three of them bet on T every time they are awakened, they will be correct 2/3 of the time on average, which aligns with their credences. — Pierre-Normand
If we run this experiment once with three participants, and all three of them bet on T every time they are awakened, they will be correct 2/3 of the time on average, which aligns with their credences. — Pierre-Normand
Most of her awakenings occur on the rare occasion when 100 tosses yield heads, which forms the basis for her credence P(100H) being greater than 1/2. — Pierre-Normand
However, the Sleeping Beauty problem specifically inquires about her credence, not about the rationality of her attempt to maximize her expected value, or her preference for some other strategy (like maximizing the number of wins per experimental run rather than average gain per individual bet).
Even if she were to endorse your perspective on the most rational course of action (which doesn't seem unreasonable to me either), this wouldn't influence her credence. It would simply justify her acting in a manner that doesn't prioritize maximizing expected value on the basis of this credence. — Pierre-Normand
The only significant divergence lies in the frequency of opportunities: the hostage can't be provided with frequent chances to escape without invalidating the analogy, whereas Sleeping Beauty can be given the chance to guess (or place a bet) every single day she awakens without undermining the experiment.
However, we can further refine the analogy by allowing the hostage to escape unharmed in all instances, but with the caveat that he will be recaptured unknowingly and re-administered the amnesia-inducing drug. This would align the scenarios more closely. — Pierre-Normand
However, consider a different scenario where the hostage has a small, constant probability ε of discovering the means of escape each day (case-2). In this scenario, stumbling upon this means of escape would provide the hostage with actionable evidence that he could use to update his credence. Now, he would believe with a probability of 6/11 that he's in safehouse #2, thereby justifying his decision to pick up the torch. Consequently, given that 6 out of 11 kidnapped victims who find the means to escape are surrounded by lions, 6 out of 11 would survive. — Pierre-Normand
Your credence in each possibility is based on the number of ways in which you could find yourself in your current situation given the possible outcomes of the specific coin toss. — Pierre-Normand
It's worth noting that your provided sequence converges on 1/3. If the captive is not keeping track of the date, their credence should indeed be exactly 1/3. — Pierre-Normand
Sorry, I meant to say that he can rule out it being the case that the coin landed heads and that this is Day2. — Pierre-Normand
Do you agree that from the sitter point of view, the probability that the coin landed tails is 2/3?
Once John Doe awakens, he can rule out the possibility of it being Day 2 of his participation, and so can you. — Pierre-Normand
Once you have been assigned to John Doe, your credence (P(H)) in this proposition should be updated from 1/2 to 2/3. This is because you were randomly assigned a room, and there are twice as many rooms with participants who wake up twice as there are rooms with participants waking up once. — Pierre-Normand
In this modified scenario, imagine Monty picks one of the unchosen doors at random and reveals a goat by chance. — Pierre-Normand
So there are two ways for the participants to approach the problem:
1. I should reason as if I am randomly selected from the set of all participants
2. I should reason as if my interview is randomly selected from the set of all interviews — Michael
From the external point of view of the experimenter, it makes sense that the tree probabilities add up to more than one since the three outcomes are non exclusive. The events (Tails & Monday) and (Tails and Tuesday) can (and indeed must) be realized jointly. The intersection zone in the Venn diagram highlights the fact that those two events aren't mutually exclusive. The perspective (and epistemic position) of Sleeping Beauty is different. When she is awoken, those three possible states are mutually exclusive since it is not possible for her to believe that, in her current state of awakening, the current day is both Monday and Tuesday. Her credences in the three mutually exclusive states that she can be in therefore must add up to 1. — Pierre-Normand
There are four people, each assigned a number (unknown to them) between 1 and 4. Two of them are to be put to sleep at random, determined by a single coin toss: if heads then 1 and 2 are put to sleep; if tails then 3 and 4 are put to sleep.
After the coin toss one of the two is put to sleep first. For each of the remaining three, what is the probability that they will be put to sleep? Is it 1/3, because there are three of them and only one is to be put to sleep, or is it 1/2, because that was the probability before the first was put to sleep?
I agree with the idea that Sleeping Beauty's credence in H is updated to 1/2 after she learns that her current awakening is occurring on a Monday. The question is what was this credence updated from, before she learned that the current day was Monday. At that point she could not rule out that the current day was Tuesday. Does that not imply that her credence in H was lower than 1/2 before she learned that the day was Monday? Before she learned that, all three mutually exclulsive areas of the Venn diagram represent possible states for her to be in. She therefore should have non-zero credences for each one of them. — Pierre-Normand
The probability that the coin will land heads and she will be woken on Monday is 1/2.
The probability that the coin will land tails and she will be woken on Monday is 1/2.
The probability that the coin will land tails and she will be woken on Tuesday is 1/2.
As the Venn diagram shows, there are two (overlapping) probability spaces, hence why the sum of each outcome's probability is greater than 1.
As one of the 2^100 participants who has just been awoken, your credence that you've been assigned the winning ticket numbered 2^100 should be equal to (or slightly greater than) the probability that you haven't, given that half the participant interviews (plus one) are with participants assigned the winning ticket. — Pierre-Normand
I would like the halfer to explain why ruling out the Tuesday scenario doesn't affect their credence in the coin toss outcome at all. — Pierre-Normand
We must rather imagine that in the unlikely event that the coin lands heads 100 times in a row, 2^101 persons get pulled from the waitlist (or else, only one person does). In that case, if you are one random person who has been pulled from the waitlist, it is twice as likely that your have been so pulled as a result of the coin having landed heads 100 times in a row than not. It is hence rational for you to make this bet and in the long run 2/3 of the people pulled from the waitlist who make that bet with be right. — Pierre-Normand
I'm not sure why you think this is absurd. Compare again my lottery study example. Suppose there are one billion people on the waiting list. If a coin lands heads 20 times in a row, then, 100 million people get pulled from the list. Else, one single person gets pulled from the list. I am then informed that I got pulled from the list (but not whether I am alone or one from 100 million). Is it absurd for me to believe that the coin landed heads 20 times in a row? My credence in this proposition should be roughly 99% — Pierre-Normand
In Sleeping Beauty's case, your intuition that her credence in the high probability of the sequence of heads ought to be absurd apparently stems from your unwillingness to contemplate the possibility of her being able to updating it on the basis of her knowledge that she might be awoken an even more absurdly large number of times as a consequence of this very unlikely event. — Pierre-Normand
There is a space of possible awakening/interview events A that are being characterised by the day in which they occur ((M)onday or (T)uesday) and by the state of a coin that has been flipped prior to them occurring ((H)eads or (T)ails). P(H) = P(T) = 0.5. — Pierre-Normand
One clue to this is to let SB bet on the outcome that her credence is about and see if her betting behavior leads her to realize the EV she is anticipating. — Pierre-Normand
I would rather say that the experience works by ensuring that Sleeping Beauty finds herself being awoken in circumstances that she knows to be twice as likely to occur (because twice a frequent) as a result of a coin having landed heads than as a result of this coin having landed tails. — Pierre-Normand
But in that case P(Awake|Heads) should, consistently with this interpretation, refer to your being awakened at all conditioned on the case where the coin landed heads. This is (1/3+2/3)/2 = 0.5 — Pierre-Normand
If you mean P(Awake) to refer to the probability of your being awakened at all (on at least one day) then P(Awake) is indeed 0.5. — Pierre-Normand
I am then using Bayes' theorem to deduce the probability of a random awakening having occurred on a Tuesday. — Pierre-Normand
Let's say that there are three beauties; Michael, Jane, and Jill. They are put to sleep and assigned a random number from {1, 2, 3}.
If the coin lands heads then 1 is woken on Monday. If the coin lands tails then 2 is woken on Monday and 3 is woken on Tuesday.
