The paradox of Gabriel's horn. 1/x cannot be less than 0, whereas it can be less than any other positive real number. — InPitzotl
Consider the
Stern-Brocot tree. If L=1/2, LL=1/3, LLL=1/4, and so on, then L_repeated is a "real number" which it cannot be less than. I suspect you'll argue that L_repeated = 0, which brings us to the classical debate of whether 0.9_repeated=1. I would argue that 0.9_repeated describes a potentially infinite process and is not a number in the same sense that 1 is (dare I say that 0.9_repeated is not a rational number), but that's a debate for another time. In any case, consider this: if a number at the 'bottom' of the Stern-Brocot tree is equivalent to both of its neighbors, are any of the real numbers actually distinct from each other?
What is arbitrary is the choice of "0" here, as the representation of some non-existent limit. — Metaphysician Undercover
Given that y continually approaches 0 as x increases, the limit is 0. We don't need a point at (∞,0) for the limit to be equal to 0. I think the problem is that your definition of limit doesn't match the standard definition. With that said, I sympathize with your view and I think your argument would be stronger if you focused on the limit used to calculate the volume of GH. Such a limit is a whole different beast since it converges to pi - an irrational 'number'. Just because the interval corresponding to V can get arbitrarily small as a approaches infinity, it doesn't necessarily mean that V has a definite value. Just as it is impossible to explicitly compute all decimal digits of pi, the best anyone can do here is either (1) provide a small interval for V or better yet (2) leave V in algorithmic form (i.e. pick your favorite formula for pi and don't bother to compute it).