The textbook axioms and formal proofs of the theorems are subject to change or found out to be falsity at any moment when someone comes up with the newly found axioms and proofs against them. — Corvus
Of course, my point went right past you no matter that I explained it clearly.
There are many different and alternative formal axiom systems in mathematics. Mathematicians and philosophers sometimes disagree on which axioms are best, most intuitive, and even true to some concepts. That's a good thing. But the point that went past you is that what is objective, even among them, is that for each one, there is a mechanical procedure to determine whether a purported formal proof is indeed a formal proof allowed from the given set of axioms and inference rules. And, as people may disagree as to what axioms are best or even philosophically or conceptually justified, at least in the formal sense, one doesn't "disprove" an axiom or set of axioms as you seem to imagine (except, of course, by showing that the axioms of a given system are inconsistent
with themselves; and by the way, there are at least two famous cases where axiom systems were proven inconsistent - Frege's and one of Quine's, examples that it is not the case that mathematicians follow blindly and uncritically, ).
No matter what the textbooks say, one must be able to ask Why? instead of just blindly accepting the answers and claim that it is the only truths because the textbooks say so. — Corvus
Again, you are unfamiliar with any of this; you are blindly punching.
We have axioms and rules of inference. Textbooks often do explain the bases for the axioms and rules of inference and do not require blind acceptance. Then, with the axioms and inference rules given, it is objective whether or not a purported proof from those axioms and with those rules is indeed a proof from the axioms with the rules. So that does not require blind acceptance. The process is to state the axioms and rules, often providing intuitive bases for them, then proofs of theorems, as those proofs can be checked. And a good student does check the proofs, both to understand them and to verify for themselves that it is indeed a proof from the axioms with the rules.
But with the inference rules, it's even better. In a mathematical logic, we PROVE that the inference rules are justified in the two key ways: The rules permit only valid deductions and the rules provide for every valid deduction.
On the other hand, blind acceptance is when mathematics is not given axiomatically. The teacher says that a bunch of formulas are correct, to be memorized and performed upon call. But why, the student may ask? Instead, with axioms, the student may ask why, and always an answer is given based on previous formulas that prove the ones in question. And those previous formulas are proven, etc., until we get to the end of the line - the axioms. So, with axiomatics, we can justify everything formally, except the axioms, which are the starting point (not everything can be justified formally without infinite regress or circularity) and are only justified intuitively. Then, one may say, but I don't like or accept those axioms. And the best answer is, "Fine. You don't have to. But at least you can still check that the proofs are permitted from the axioms and rules. And if one wants, one can study an alternative set of axioms. Or even not study any axiomatic system and go one's merry way accepting or not accepting whatever non-axiomatic mathematics one encounters."