I'm perfectly happy to stipulate so for purposes of discussion. After all, there are no infinite sets in physics, at least at the present time. So, what of it? The knight doesn't "really" move that way. Everybody knows that knights rescue damsels in distress, a decidedly sexist notion in our modern viewpoint. Therefore chess is misleading and unrepresentative nonsense. Nevertheless, millions of people enjoy playing the game. And millions more enjoy NOT playing the game. What I don't understand is standing on a soapbox railing against the game. If math is nonsense, do something else. Nobody's forcing you to do math, unless you're in school. And then your complaints are not really about math itself, but rather about math pedagogy. And I agree with you on that. When I'm in charge, a lot of state math curriculum boards are going straight to Gitmo. — fishfry
So are you agreeing that mathematical infinity has neither philosophical nor scientific relevance and that everyone knows this, or am i right to stand on a soap box and point out the idiocies and misunderstandings that ZFC seems to encourage?
I might point out, though, that assuming the negation of the axiom of choice has consequences every bit as counterintuitive as assuming choice. Without choice you have a vector space that has no basis. An infinite set that changes cardinality if you remove a single element. An infinite set that's Dedekind-finite. You lose the Hahn-Banach theorem, of vital interest in functional analysis, which is the mathematical framework for quantum mechanics. The axiom of choice is even involved in political science via the Arrow impossibility theorem. — fishfry
Obviously, a denial of AC doesn't amount to an assertion of ~AC, given that things are generally undecidable, but i see no counter-intuitive examples in what you present. In fact, many examples you raise should be constructively intuitive if we recall that construction can proceed either bottom-up from the assumptions of elements into equivalence classes, or vice versa, so an inability to locate a basis in a vector space using top-down construction seems reasonable.
As for the sciences, AC is meaningless and inapplicable when it comes to the propositional content. At best, AC serves a crude notation for referring to undefined sets of unbounded size, but ZFC is a terribly crude means of doing this, because it only recognises completely defined sets and completely undefined sets without any shade of grey in the middle as is required to represent potential infinity.
QM has also been reinterpreted in toposes and monoidal categories in which all non-constructive physics propositions have been removed, which demonstrates that non-constructive analysis is dying and going to be rapidly replaced by constructive analysis, to the consternation of inappropriately trained mathematicians who resent not knowing constructive analysis.
Besides, if you have a nation made up of states, can't you always choose a legislature? A legislature is a representative from each state. If there were infinitely many states, couldn't each state still choose a representative? The US Senate is formed by two applications of the axiom of choice. The House of Representatives is a choice set on the 435 Congressional districts. The axiom of choice is perfectly true intuitively. If you deny the axiom of choice, you are asserting that there's a political entity subdivided into states such that it's impossible to form a legislature. How would you justify that? It's patently false. If nothing else, each state could choose a representative by lot. — fishfry
Obviously, the axiom of choice isn't used in the finite case. In the infinite case, the sets of states needs to be declared as being Kuratowski infinite in order to say that the elements of the set are never completely defined, and so
a forteriori the size of the set cannot be defined in terms of it's finite subsets.
Secondly, the set should be declared as Dedekind finite, in order to say that the set is an observable collection of elements and not a function (because only functions can be dedekind-infinite).
So, yes, you can choose as many representatives as you wish without implying a nonsensical completed collection of legislatures that are a proper subset of themselves, but formalisation of these sets isn't possible in ZFC, because AC and it's weaker cousin, the axiom of countable choice, forces equivalence of Kuratowski finiteness and Dedekind finiteness.