Godel, God, and knowledge
So you are saying that Godel's examples of things that are unprovable do not require a loop in them? As I see it, unprovable things can be 1) axoims which we understand intuitively as unprovable but which make sense ("common sense" comes in) as the basis of a system, or 2) propositions that are unprovable but which can be understood by intuition (thus knowledge is fully knowable), or 3) loopy statements like Russell's paradox that are really fallacious logically.
I am always willing to learn new things, but you wrote:
If P is a closed formula, then there is a system S such that P is an axiom for S. — TonesInDeepFreeze
Couldn't you just have said "systems have axioms"? That is all that says! This is my problem with the whole symbolic logic stuff. They get into problems and call things paradoxes because they don't converse with adult conversation language. We should be truly speaking about truths, not fitting them into structures which confuses matters. We have crazy people try to PROVE there is a God from modal logic ("ontological argument"). It's just ridiculous that people would even consider trying to do this. I think very fluidly and I don't get a pleasant sensation from a paradox that just reverts back on itself. And you say:
If a theory T is a consistent, recursively axiomatizable extension of Robinson arithmetic, then there is a sentence G in the language for T such that neither G nor ~G is a theorem of T. — TonesInDeepFreeze
In real human language, you are saying that a theory has a part of it is and is not a part of it. Again, key word is "recursive". I don't understand why anyone would want to think about logic eating itself like a snake eating its tail. That kind of stuff gives me a headache. It's not cool