I think the Halfer position is roughly that there are only two outcomes: a single interview conducted in one sitting, and a double interview spread out over two sittings. Those outcomes are equivalent to the two possible outcomes of the coin toss. (If you have an even-numbered population to work with, you can just do away with the coin altogether.)
What is the Thirder equivalent? If there are three outcomes, they cannot be equivalent to the two outcomes of the coin toss. — Srap Tasmaner
If I understand correctly, you seem to be asking how the Thirders might be able to infer the probabilities of the three fine-grained types of awakening outcomes from the (prior) probabilities of the two coin toss outcomes?
Indeed, we can split an even-numbered population into two equal sub-populations Pop-1 (Beauties who awaken once) and Pop-2 (Beauties who awaken twice). This allows us to focus solely on Sleeping Beauty's personal credences upon awakening, concerning whether she's part of Pop-1 or Pop-2.
In my view, the coin in the original problem provides a convenient source of stochasticity. Without it,
@sime would have been justified to worry about the explanation for Sleeping Beauty's priors. Consider this: Suppose I present you with a die that could be loaded to always land on 'six'. If it's not loaded, then it's fair. You throw it once and it lands on 'six'. What is your credence that the die is loaded? Without an objective grounding for your priors, the answer is undefined. However, if I tell you that there are two identical dice - one loaded and the other fair - and a fair coin toss determines which one you'll use, you can now update your credence that the die is loaded from 1/2 to 6/7, given that over time, six out of seven 'sixes' will be from a loaded die.
Let us therefore assume, as you suggested, that Sleeping Beauty's priors are P(Pop-1) = P(Pop-2) = 1/2, without needing to delve into the specific stochastic process that placed her in either Pop-1 or Pop-2.
The key disagreement between Halfers and Thirders is whether Sleeping Beauty can update her credence upon awakening that she's part of Pop-1 from 1/2 to 1/3. Halfers argue that since Sleeping Beauty knows she'll be awakened at least once, she can't distinguish whether her current awakening is the only one (Pop-1) or one of two (Pop-2). Therefore, these two possibilities should be equally probable from her perspective.
This argument seems to misuse the Principle of Indifference. Consider the die example: When the die lands on 'six', you can't distinguish whether this outcome is from the fair die or the loaded one. However, you can still update your credence P('loaded') from 1/2 to 6/7. The die landing on 'six' does convey information in this context.
Halfers, therefore, need a stronger argument to support their 'no new information' claim. Alternatively, they could challenge Thirders to explain what new information Sleeping Beauty receives that allows her to rationally update her credence in Pop(1) from 1/2 to 1/3.
I believe this can be explained step by step to make it more intuitive:
--First step--
Imagine that upon being divided into populations Pop-1 and Pop-2, the participants in each population are awakened only once the following day in their respective waking rooms. In half of the Pop-1 rooms, a single red tulip is placed on the nightstand, hidden by a cardboard cylinder. In the other half, a white tulip is used instead. In all Pop-2 rooms, a red tulip is utilized. As a participant in this experiment, Sleeping Beauty is informed of these specific details. Upon waking, she is asked about her credence in being part of Pop-1, and what her credence is that the tulip next to her is white. In this context, her credences should be P(Pop-1) = 1/2 and P(white) = 1/4.
The cardboard cylinder is then removed, revealing a red tulip. What should Sleeping Beauty's credences be updated to now? They should be P(white) = 0 and P(Pop-1) = 1/3, right? This example appears to use Bayesian reasoning in a straightforward manner: Over time, 1/3 of participants who wake up in a room with a red tulip are part of Pop-1.
(As for the strict proof: P(Pop-1|red) = P(red|Pop-1)*P(Pop-1)/P(red) = (1/2)*(1/2)/(3/4)=1/3)
--Second step--
Let's change the previous scenario so that all participants experience two awakenings, one on Monday and another on Tuesday. Participants in Pop-1 awaken once with a white tulip and once with a red tulip, while participants in Pop-2 awaken twice with a red tulip. We also introduce an amnesia-inducing drug to ensure that the participants don't remember the outcome of the Monday awakening when they are awakened again on Tuesday.
In this new context, whenever Sleeping Beauty awakens, what should her credences P(Pop-1) and P(white) be? Arguably, most people, whether they're Halfers, Thirders or double-Halfers, would agree that these should be P(Pop-1) = 1/2 and P(white) = 1/4.
The cardboard cylinder is then removed and, as it happens, a red tulip is revealed. What should Sleeping Beauty's credences be updated to now? They should again be P(white) = 0 and P(Pop-1) = 1/3, right?
Perhaps the complexity of applying Bayesian reasoning in this context stems from the fact that participants in Pop-1 and Pop-2 who awaken on Monday aren't a distinct group from those who awaken on Tuesday. Indeed, the same individuals are awakened twice. To accommodate this factor, we can adjust Sleeping Beauty's Bayesian reasoning in the following manner:
Every time a participant wakes up, the probability that they are in a room with a white tulip is 1/4. If I awaken in a room with a white tulip, the probability that I am part of Pop-1 is 1/2, and it's zero if I am part of Pop-2. As such, my prior probabilities are P(white) = 1/4 and P(Pop-1) = 1/2, while P(red|Pop-1) = 1/2.
Consequently, once the tulip's color is revealed to be red, I can make the same inference as before: P(Pop-1|red) = P(red|Pop-1)P(Pop-1)/P(red) = (1/2)(1/2)/(3/4)=1/3.
In an intuitive sense, this means that, since the majority of awakened participants find themselves next to red tulips because they belong to Pop-2, witnessing a red tulip upon awakening boosts their credence in being part of Pop-2. Although seeing a red tulip doesn't enable them to distinguish cases where the current awakening is the only one where they'll see such a tulip (as in Pop-1) or one of two such instances (as in Pop-2), it still provides information and counts as evidence that they are part of Pop-2. The reasoning behind this is analogous to why a die landing on 'six' constitutes evidence that the die is biased even though a fair die can also land of 'six'.
--Third step--
In this new variation, Sleeping Beauties themselves play the role of tulips. The populations Pop-1 and Pop-2 are participants, let's call them Sleeping Uglies*, who each share a room with a Sleeping Beauty. The Sleeping Uglies will be administered the same amnesia-inducing drugs on Sunday and Monday night, but they will always be awakened both on Monday and Tuesday, ten minutes prior to the Sleeping Beauty's potential awakenings.
Whenever I, as a Sleeping Ugly, awaken, the probability that I am in a room with a 'sleeping' (i.e., not scheduled to be awakened) Sleeping Beauty is 1/4. The probability that I now have been awakened in a room with a 'sleeping' Sleeping Beauty is 1/2 if I am part of Pop-1 and zero if I am part of Pop-2. Therefore, my priors are P('sleeping') = 1/4 and P(Pop-1) = 1/2, while P('awake'|Pop-1) = 1/2.
Therefore, after Sleeping Beauty is awakened in front of me, I can infer, as before, that P(Pop-1|'awake') = P('awake'|Pop-1)*P(Pop-1)/P('awake') = (1/2 * 1/2)/(3/4) = 1/3, meaning the probability that I am part of Pop-1 after Sleeping Beauty is awakened is 1/3.
*My use if the Sleeping Uglies as participants in the experience, and of Sleeping Beauties' awakening episodes as evidences for the Uglies, is inspired by, but reverses, the example proposed by Robert Stalnaker in his paper
Another Attempt to Put Sleeping Beauty to Rest.
--Fourth and last step--
We can now dispense with the Sleeping Uglies altogether since their epistemic situations, and the information that they are making use of (namely, that the Sleeping Beauty in their room awakens) are identical to those of the Sleeping Beauties themselves. The only difference is that there is a ten minute interval between the moment when the Speeping Uglies awaken and can make use of their evidence to update their credences, while the Sleeping Beauties can update their credences immediately upon awakening. Even this small difference can be wiped out by introducing a 10 minutes delay between the moment when the Sleeping Beauties are awakened (in all cases) and the moment when the interviewer shows up, with the proviso that when no interview is scheduled, the Beauties are put back to sleep rather than being interviewed, in which case their credences in P(Pop-1) momentarily drops to zero.