May I direct you to NASA's final report on the magma energy project. I'm sure that will answer many of your questions. It's too much here. No magical thinking though. NASA don't go in for that sort of thing.
https://www.osti.gov/biblio/6588943 — karl stone
It is, like I thought, 'theoretical' though, in that its aim was to only research scientific feasibility. There's still a big gap between showing something to work in a research project and unlocking the technology on a large scale in an existing energy market. Costs for instance typically are no factor in a science project, because the are subsidized and economic feasibility is not the aim of the research.
Resources are a function of the energy available to create them. Given limitless clean energy to spend there is no bottleneck in humankind's foreseeable future. We are not running out of anything; except perhaps helium - which I think can be manufactured given enough energy. — karl stone
This is not entirely right. Raw resources like all kinds of metals, are not created, save in rather rare events like supernovae or the big bangs. We have to do with what has been given us on earth for the most part.
Energy is a factor in the sense that you need energy for mining, and thus more energy lets you mine more. But this isn't free by no means. It"s typically a highly ecologically damaging activity, and not only because of burning fossil fuels, but mainly because of destroyed ecosystems.
The density of needed resources is diminishing over the years. We used to find copper in big lumps scattered across the land, now it's typically only a small percentage of the mined rock. This has been fine because mining technology coupled with dirt cheap fossil fuels let us grind through tons of material at relative little financial cost... but at the cost of larger and larger areas being mined.
So 'limitless energy' only get's you so far, if we assume we have limitless energy to begin with, which i would doubt. To begin with there's no such thing as limitless energy in physics, and even though theoretically the heat of the earth would be limitless for our intents and purposes, I highly doubt that we can turn that into limitless
usable energy. The same thing can be said about solar energy, theoretically more energy than we could ever use, shines on the earth every day, for a couple of billion years still. But in practice it turns out photovoltaic cells can only turn a small percentage of that into electricity, we need to much of certain materials to build the panels and the batteries to scale them up, they wear off over time, you end up with a lot waste etc etc...
Nothing is free, to make energy usable for us you need to build all kinds of facilities and machinery, which makes that you run into all kinds of practical limits if you want to scale it up. For magma-geothermal we, I guess, don't know what the real costs are because it hasn't been deployed on a large enough scale. And that is by itself already a big issue because we need to decarbonise right now ideally. We have little time to put our hope in future technologies.
Looked at in this way, it follows that limits to growth is the consequence of a misapplication of technology. No-one need have a carbon footprint. I'm not claiming magma energy would solve everything right away, but abundant clean energy gives subsequent generations the best shot at a decent future. And limitless clean energy changes the calulus of economic rationality; allowing for recycling for example, or desalination and irrigation. The increase in downstream value will sustain civilisation. — karl stone
Carbon is hardly the only thing that matters. There are definitely limits, it's just not clear where they exactly lie. Waste heat of continued increase in energy use alone would fry the earth eventually.... But anyway, I do agree with the sentiment that we should give future generations a decent shot by finding the best way to generate energy.