Consider now paraconsistent logic as a system that mustn't descend into triviality which it would be if all propositions are provable as true within it. That means you don't want paraconsistent logic to prove the opposite of ~D, which is D, to be true. Doesn't this amount to saying you don't want (D & ~D) to be true, which it would be if ~D is true (you're not in Indonesia) and D (you're in Indonesia) is also true? Isn't not wanting (D & ~D) to be true just another way of affirming the LNC? In other words the non-triviality of paraconsistent logic is dependent on affirming the LNC.
-
I don't agree with your characterization of what's going on here. Surely I think that some (actually most) contradictions should not be provable. But suppose that L is the Liar Sentence. Since I think the Liar Sentence is both true and false, I want both L and ~L, and thus L & ~L, to be in my theory. So, while there are some contradictions I want to avoid (such as D & ~D), there are some that I want to include in my theory.
Also, the LNC cannot be the ground for avoiding triviality, because as I mentioned in my OP, a number of Dialectical Logics do not have the LNC as a theorem. To be sure, I do think that the LNC should be a theorem, but this is not why I want to avoid triviality.
Of course, liar paradoxes are only contradictions if their truth is considered to be atemporal; otherwise these contradiction are avoidable using a tensed logic in which every sentence of a proof is temporally indexed according to the moment of it's creation, wherein the only distinction between premises and conclusions is that the latter is constructed after the former.
In such a tensed logic, liar paradoxes of the form P(t) => ~P(t+1) are consistent and only the simultaneous derivation P(t) and ~P(t) is inconsistent.
-
These are very interesting remarks. Sadly, my knowledge of dynamic logics is sorely lacking at this point in time, but I think dynamic logics at best can only have partial applications; for there are many cases where we need to use a static logic. And it is in these scenarios that the Liar Sentence arises.
Or perhaps, contradiction only appears unresolved within logic. Reason, however, can rise above and incorporate the contradiction into a unity (like building a pyramid). Logic could be likened to a prison for the mind (or like stabilisers on a bike). Reason could be likened to a free mind.
-
I understand this view, but I don't think anything is off-limits to logic. Of course, the ordinary logic that we learn from the textbooks is woefully limited, but if we turn to a suitable non-standard logic, then there is nowhere we can't go with it.
I just want to throw this out there: maybe you reading this are where yo u think you are and in Indonesia at the same time. Maybe it's not about nothing being true, but everything being true. But you experience what you experience. It seems like all the truths should be experienced at once but it's not because if everything is true, than even your experience now is too
-
This is essentially the view of Paul Kabay. If you aren't aware of him, he is a philosopher who defends Trivialism, i.e. the view that all propositions are true. While I don't agree with this view, it is very interesting indeed.