You say that the truth of "the kettle is black " depends on both that the kettle is black and that some hidden value is in such and such a state — Isaac
You want to name non-linguistic things, as if that very act were not linguistic. — Banno
SO what, if anything, is our disagreement? — Banno
I don't know why you want that. I'm not your shrink. — Banno
The point at hand is the kettle boiling. That's a fact. But you want there to be another thing, that shall not be named, that is nevertheless the fact of the kettle boiling. — Banno
Language is embedded in breakfast and waking and...
You might not narrate your life, but you might. — Banno
The "existence" of mathematical objects in mathematical anti-realism is different to the "existence" of mathematical objects in mathematical realism. — Michael
Correct, hence why platonism and nominalism about mathematics here is far-reaching and beyond the closer phenomenon at hand, being just that universal set itself. — Kuro
It's as if Michael would have us say, that the kettle is boiling is not a fact — Banno
One must drop the pretence of being able to get outside of language while still using language. — Banno
One sign of mystery is a collection of arguments known as the slingshot. It's the reason we say the extension of any sentence is it's truth value. All truths designate the same Great Fact. — Tate
It seems the truth of "the kettle is black" is entirely dependent on the meaning of 'kettle' and 'black' — Isaac
It's just that we have a mystery box in the flowchart specifically regarding that last sentence. — Tate
It looks like you've stepped out beyond the speaker and the world to affirm that this is what truth is. — Tate
Do we all basically agree that we never get "outside" of language. Truth is a matter of comparing a statement to another statement? — Tate
What I’m arguing against is the deflationary view that there is never any material component to facts; — Luke
Not sure of the relevance to the topic, either. — Banno
So have you spoken to any blind folk about this? — Banno
What do you think of the link, if any, to Davidson's rejection of conceptual schema? Davidson's strategy seems to me to be showing that conceptual schema, if they exist, must be private; but that leads to their being incoherent, unintelligible. Hence, he rejects the notion. — Banno
Well, if you believe that Wittgenstein's point about a private language is well-founded, then it would follow that Davidson is correct to reject the notion of a private conceptual schema. It would be incoherent and unintelligible. — Sam26
Former U.S. President Donald Trump's team may not have returned all the classified records removed from the White House at the end of his presidency even after an FBI search of his home, U.S. prosecutors warned on Thursday, calling it a potential national security risk that needs investigation.
...
The Justice Department on Thursday suggested there could be more classified records that were removed from the Trump White House that investigators have not yet located. This revelation comes about a week after the Justice Department released a detailed list of property seized from Trump's home which showed the FBI located 48 empty folders labeled as classified and another 42 which indicated they should be returned to a staff secretary or military aide.
Legal experts were perplexed as to why the folders were empty, and it was not clear whether records were missing.
...
"The injunction against using classified records in the criminal investigation could impede efforts to identify the existence of any additional classified records that are not being properly stored - which itself presents the potential for ongoing risk to national security," they added.
No equivocation at all between "is a member of some set" and "exists", it's not a matter of conflating the concepts rather simply a matter of logical entailment. It's incoherent (and inconsistent) for anything to be a member of a set but also simultaneously not exist. — Kuro
Speaking on Fox News, without providing any evidence, Eric Trump said: "I know the White House as well as anyone, I spent a lot of time there, I know the system, this did not happen without Joe Biden's explicit approval. The White House approved of this.
But the cardinality of P(E) can only be greater than E's if there exists elements in P(E) that are not members of E — Kuro
This is a category error namely in that sets never weigh anything — Kuro
What does this have to do with philosophy? It's pure Math. — Alkis Piskas
Your claim that because I don't agree with you, it then follows that I just don't understand your logic is a matter for your own measure of your own arrogance. — universeness
Combining an apple and a pear will have a quite distinct taste, compared to tasting an apple or tasting a pear. So, the combination produces a new entity of taste. — universeness
“The whole is greater than the sum of the parts.” — universeness
For however many things have a plurality of parts and are not merely a complete aggregate but instead some kind of a whole beyond its parts...
You cannot demonstrate all three physical quantities of weight at the same instant of time — universeness
You imply the weights are real for your 1g, 2g and 3g posit and then notional for your 6g step. — universeness
... the equivalences of the form 'A' is true if and only if A ... define the conditions under which [my emphasis] a sentence is true.
The Revision theory, discussed in some other posts, appears to offer a way to map out the circularity of the T-sentence definition of Truth. — Banno
Under the logic you are suggesting, there could be no valid numerical sets such as the set of prime numbers as you would suggest but they are all just multiples of 1. So, 1 is the only true member of the set of primes, or integers etc? Is that a consequence of the logic you are applying? — universeness
This is an inaccurate understanding of sets. Recall the axiom of extensionality. {a, b, c} and {c, b, a}, as well as {b, c, a} are all just the same set, because they have the exact same members and thus satisfy coextension. Sets, plainly as sets, are therefore invariant with respect to these configurations you use in your example, which are otherwise too fine-grained of a notion. There's a grain of truth here in that a realist interpretation of sets would indeed count {b} and b as separate, distinct objects and thus count two things, but this is unrelated to your configuration problem. — Kuro
This is still hardly a problem though, namely because of Leibniz's Law: there are predicates true of a set that are not true of its members. For instance, consider cardinality. The set {a, b, c} would be truly predicated of having the cardinality of 3, though none of its members have a cardinality of 3 — Kuro
I have a piece of metal that weighs 1g and a piece of metal that weighs 2g. So the collection of metal weighs 3g. This is the only metal that exists.
What is the total weight of all the metal that exists? 3g or 6g? Obviously 3g. You don't add the weight of the collection to the weight of its parts. So you can't say that the collection exists in addition to each of its parts. Unless you want to be a Platonist and say that the collection exists as some abstract, weightless object, which I think is absurd. — Michael
