• Agent Smith
    9.5k
    Sample Math Problem in an Examination

    One-third of 366 apples were shared among one-seventh of 427 people. How many apples did each person get?

    = The number of apples to be shared.

    = The number of people among whom the apples are to be shared.

    = 2. Each person gets 2 apples!

    Real World Problem

    What is the area of a circle with a circumference of 37 cm?

    Area of the circle = = 108.94155854640235733380093602849...cm2

    Student's Rule of Thumb

    If all the numbers in your calculations are such that they cancel out and leave you with a nice whole number answer, you're (almost) guaranteed to have solved the problem correctly.

    Why doesn't this rule apply to real life scenarios? Shouldn't we be going :chin: huh? when after trying to calculate some constants in math and science we find their values to be rather unwieldy/cumbersome/awkward like, for example, the numbers and ?

    Something's Wrong!? :grin:
  • jgill
    3.9k
    Something's Wrong!? :grin:Agent Smith

    Your perspective.
  • Banno
    25.5k
    :grin: Yep.
  • Agent Smith
    9.5k
    Your perspective. — jgill

    What's wrong with it?

    I've always had that Pythagorean feeling :snicker: that something's wrong! Irrational numbers?! WTF? :chin:

    Hippasus of Metapontum (drowned at sea for mathematical heresy).

    Yep. — Banno

    What?
  • unenlightened
    9.3k
    Examiners just want to test your understanding and methodology, but God wants to test your calculating skill as well.
  • ToothyMaw
    1.4k
    If all the numbers in your calculations are such that they cancel out and leave you with a nice whole number answer, you're (almost) guaranteed to have solved the problem correctly.Agent Smith

    Assuming a more complex math problem, I think you would mean if the variables cancel out and you are left with an integer? Or maybe a rational number?

    If you do mean whole numbers, the set of whole numbers is a countably infinite set, so just coming up with a single whole number doesn't guarantee a whole lot.

    Why doesn't this rule apply to real life scenarios? Shouldn't we be going :chin: huh? when after trying to calculate some constants in math and science we find their values to be rather unwieldy/cumbersome/awkward like, for example, the numbers ππ and ee?Agent Smith

    What is unwieldy/cumbersome/awkward about ? Just because there is no magical logic gate in your calculator than can represent as a ratio of two integers, or CAS that can compute it algebraically, doesn't mean there is something wrong there.
  • Banno
    25.5k
    Should we also be amazed, puzzled and astonished that 1 is accurate to infinity? That 1 is the same as 1.000...?
  • Agent Smith
    9.5k
    Examiners just want to test your understanding and methodology, but God wants to test your calculating skill as well.unenlightened

    Good point! You understand teachers, math teachers to be precise, well!



    To All

    Consider the cancellations in a math calculation problem in an examination as a clue that you're on the right track, you've solved the problem correctly.

    If you end up with a rational number that has a decimal extension, forget about irrational numbers, as an answer, alarm bells should go off in your head (you've either messed up with the calculations or are using the wrong method to solve the problem).

    This is what I call the Pythagorean feeling (that something's wrong!).
  • Harry Hindu
    5.1k

    Seems to me that both scenarios are real life scenarios. What use is math if not meant to be applied to real world scenarios? How is an impossible scenario described by math or language useful in real life?

    Significant digits are the digits that are necessary in solving a real world problem. All other digits are unnecessary to the problem at hand. They may be useful for some other problem, but not the current one.

    Depending on the number of humans and the fraction of them receiving an apple you could have ended up with an irrational number of humans. Can a human be divided and still be a human? So in the case of humans, we are only concerened about whole numbers and not any digits after the decimal.

    We should keep in mind that math is a quantified representation of a world that is not composed of separate static objects but of intertwined relations. Math is more of a representaion of how the world is perceived than how the world is independent of perception, so we run into problems when we start to believe that the answers to math problems describe a world independent of our perceptions and goals.
  • Agent Smith
    9.5k
    @Harry Hindu

    I have mixed feelings about irrational numbers. They've been proven to exist from the time of Pythagorss () but it's an open secret that the Pythagoreans were dead against it, it didn't make sense to them that such numbers exist.
  • alan1000
    200
    "If all the numbers in your calculations are such that they cancel out and leave you with a nice whole number answer, you're (almost) guaranteed to have solved the problem correctly."

    I would be curious to know what argument from mathematical philosophy supports this assertion? I can see a sense in which one could argue that set theory revolves around "nice whole numbers", but I am not sure how one might apply it to quantum mechanics or relativity theory.
bold
italic
underline
strike
code
quote
ulist
image
url
mention
reveal
youtube
tweet
Add a Comment

Welcome to The Philosophy Forum!

Get involved in philosophical discussions about knowledge, truth, language, consciousness, science, politics, religion, logic and mathematics, art, history, and lots more. No ads, no clutter, and very little agreement — just fascinating conversations.