There is no first natural number to start with. It is logically impossible to have started reciting the natural numbers in descending order. — Michael
Great. Then show the logic that concludes this, without resort to another premise.If no particular step can overtake the tortoise, then the tortoise, by the described motion cannot be overtaken. Where's the need for another premise? — Metaphysician Undercover
That logic has not been shown. It's a non sequitur until it is spelled out.Following from the described premises, the supertask cannot be completed.
No such implication exists, and no such statement is made. Asserting this would be another premise, and one that makes no sense either. And yes, it would follow that the tortoise cannot be overtaken if this additional premise is added.It is logically implied that there is always further distance for Achilles to cover before overtaking the tortoise.
Your usage of 'clearly' implies you are referencing a second premise based on perhaps your intuition. What you may find 'clear' seems to be in direct contradiction with the first premise, I am presuming your 'clear' assumption is something on the order that there must be a first step, equivalent to asserting a bound to something explicitly defined as not being bounded. Of course you're going to run into contradictions if you add a second premise that directly denies the first premise. It isn't a paradox then, it's just wrong.It clearly does not have a start. — Metaphysician Undercover
Totally predictable response. We're like over 400 posts into this topic and you're you're stuck on the same fundamental mistake. You (as well as Meta above) seem to insist on an additional premise of the necessity of a bound to something explicitly defined to be unbounded. My method for performing the task made no mention of doing a first step, but it can be mathematically shown that any given step is done, and that the steps are done in order.There is no first natural number to start with. — Michael
An unbacked assertion, especially when I showed how to do it. Your presented 'logic' seems to be the argument above, declaring a second premise that happens to contradict the thing you want to find impossible. The logic to which you refer is only valid for finite sets, but you cannot learn this.It is logically impossible to have started reciting the natural numbers in descending order.
I don't think it is the extension that is ill defined with that case, but rather a leveraging of the fact that the pieces are made of infinite points each, and you don't need 'more natural numbers' to count each one of them twice. I don't understand the Banach Tarski thing enough to know why 5 is a lower limit of the number of pieces.As for the merely logically possible - as in logically but not metaphysically possible - , I imagine procedures like Banach Tarski. Turning a sphere into two spheres using only the material in the first sphere. But that's just because I can't imagine a concept of space used in metaphysics (like extension) that makes central use of non-measurable sets (things with ill defined extension in principle). — fdrake
OK, here you seem to use 'metaphysically possible' to mean 'possible in a universe with different physical laws'. But I don't find that very distinct from logically possible.Physically possible? That's getting hard. A universe that contains violations of the second law of thermodynamics is metaphysically possible. Like Lord of the Rings, Harry Potter. In the sense that there's a self consistent narrative going through those works of fiction whose behaviour is impossible to translate to our universe, those universes would be metaphysically but not physically possible.
I don't think he says that time is the issue. It is his insistence on the need to eventually recite the highest number, after which there are no more. That number doesn't exist, so the task cannot be done because it missed at least that one.So when I hear Michael talking about the impossibility of a geometric series "completing" (so to speak) due to being unable to recite the terms in finite time,
Good! Then it's logically possible for it to. An infinite number of things can complete without blowing up logic. — fdrake
You (as well as Meta above) seem to insist on an additional premise of the necessity of a bound to something explicitly defined to be unbounded. — noAxioms
This seems to be playing language equivocation games. You introduce the word 'start' here, undefined twice, once as a noun and once as a verb. Given certain definitions of both usages, I may or may not accept this additional premise you state.No, I'm saying that something with no start cannot start and something with no end cannot end. — Michael
You are clearly using Sn1 as your noun definition here, which is a direct reference to the bound that we both acknowledge doesn't exist. This usage of the noun contradicts your opening word "No" in your post where you imply that your argument is something other than "an additional premise of the necessity of a bound to something explicitly defined to be unbounded". You contradict yourself.Your argument is effectively "by definition it has no start therefore it can start without a start" which is ridiculous
I don't think it is the extension that is ill defined with that case, but rather a leveraging of the fact that the pieces are made of infinite points each, and you don't need 'more natural numbers' to count each one of them twice.. — noAxioms
OK, here you seem to use 'metaphysically possible' to mean 'possible in a universe with different physical laws'. But I don't find that very distinct from logically possible. — noAxioms
. That's a relief. I suspect that there are still people around who have difficulty with the difference between "not fully applicable" and "false". I still wonder (when I haven't anything more important to wonder about) whether Aristotelian physics is not fully applicable or not physics or false. I don't think anything important hangs on the answer, but still, that doesn't usually bother philosophers much.(A) more complex model for the universe does not effect a simple geometric model at all, no. The simple model simply isn't fully applicable to the reality it is supposed to describe, just like Newtonian physics isn't fully applicable to the same reality, despite the fact that they'll continue to teach it in schools. — noAxioms
All I was pointing to was the conceptual explosion that happened when we finally split the atom. (Which, you will remember, was by definition unsplittable).Somebody still suggests that matter is continuous? I mean, that sort of went out the window a couple centuries ago. — noAxioms
This is a fascinating issue, mostly swept under the carpet in philosophy. I don't say that you are wrong.In the sense that there's a self consistent narrative going through those works of fiction whose behaviour is impossible to translate to our universe, those universes would be metaphysically but not physically possible. — fdrake
Yes. Disagreements between logic and experience are not unfamiliar. Experience usually wins, because logic is more adaptable than it seems. (I realize that may seem like heresy in a philosophical concept, but doesn't experience support it?)The conclusion that Achilles cannot overtake the tortoise does contradict empirical evidence, that's the reason it's called a paradox. — Metaphysician Undercover
Surely a different physics will have to be consistent and complete - when it is finished. That looks very like "logically possible", doesn't it?I think that's a species of metaphysical possibility - a different physics. What would distinguish that from logical possibility, in my book, is that there are simply more ways of being noncontradictory than being unable to exist in our universe. Like flibbertygibbets. And nonmeasurable sets. And, maybe, abstract categories. — fdrake
I'm afraid that if you condescend to use ordinary arithmetic, one can predict exactly when Achilles will overtake the tortoise, given data about how fast each contestant moves and the size of the handicap.If no particular step can overtake the tortoise, then the tortoise, by the described motion cannot be overtaken. Where's the need for another premise? — Metaphysician Undercover
Neglecting acceleration, let's say Achilles gives the tortoise a head start of 100 units of length and that Achilles runs at 11 units per second and the tortoise at 1 unit per second. So, at time t seconds after the tortoise is at 100 units from the start, the tortoise will be at 100 + t units from the start, and Achilles at 11t units. These will be the same - 110 units - at time t = 10 seconds. — Ludwig V
That is a very interesting take on the argument, though I don't understand how this applies to the law or identity. But then, I don't understand the law of identity, either. What are the other two principles?That's what "first cause" arguments attempt to do. They describe the temporal aspect of "a process", "a thing", or similar term, in such a way that it necessarily has a beginning and an end in time, then they produce a logical argument from that description. It's an attempt to bring the realm of material (physical, or temporal) reality to bear on the realm of logical possibility, by stating premises which are supposed to represent the essence of material (physical) reality, and restricting logic with them. Another example of a similar restriction is the law of identity, and the other two fundamental principles. — Metaphysician Undercover
Great. Then show the logic that concludes this, without resort to another premise. — noAxioms
I'm afraid that if you condescend to use ordinary arithmetic, one can predict exactly when Achilles will overtake the tortoise, given data about how fast each contestant moves and the size of the handicap. — Ludwig V
Sure, but those mathematical principles are not the premises described by Zeno. — Metaphysician Undercover
Case closed, then.Achilles is moving, and described as doing this in a way in which he will always have to move further before he can overtake the tortoise. Since he will always have to move further before he will overtake the tortoise, we can conclude logically that he will never overtake the tortoise in that described activity. — Metaphysician Undercover
Case closed, then. — Ludwig V
Maybe I'm not being clear, so I'll try one more time. — Michael
If you want to argue that the first supertask can end ... — Michael
So I ask again: can you prove that it's metaphysically possible for me to halve the time between each subsequent recitation ad infinitum? — Michael
I doubt that consciousness is computable
— fishfry
what, because consciousness is not a physical process, or that physical processes cannot be simulated? You seem to be in the former camp. If that's the case, then no, it probably isn't computable. — noAxioms
After all if we're computations, what are the odds we'd figure that out right when we're in the age of computation?
Pretty much 1-1 odds. That's when the terminology became part of our language. You describe yourself in terms of the things you know. — noAxioms
We are water. The vast majority of mass would be lost (as would consciousness) if the water was taken away. Lots of pipes going here and there. It's a pretty good description for the Roman days. — noAxioms
Because if so, then where is the conscious mind? In the pencil? In the paper? In the air? In a neural network?
In the process. — noAxioms
Yes, I saw a domino logic gate on Youtube a while back.
Gawd, I spelled it 'Turning' machine. More typos.
Anyway, yes, the discussion was inspired by that. Any moron can create a domino or gate, but creating a nor gate gets tricky. Any gate can only be used once, so it's impossible to create say a flip flop, normally a trivial thing created with a pair of nor gates.
I've not seen the video, but mention of it inspired me to design a Turing machine with the technology. Can dominos be used to run a physical simulation? I think it's possible since I found not obvious roadblocks. I'm tempted to start a topic on it, but not here since it isn't a philosophy topic at all.[/quoet]
I don't know about dominos. The pencil and paper argument is stronger.
— noAxioms
Perhaps it's some kind of analog computation, but that's not the same thing.
I've also programmed analog computers in school, never on the job. It's a different sort of thing, I tell ya. — noAxioms
ps -- I checked out the Simulation thread and from there, saw your initial post in the "What is the Simulation Hypothesis" thread, and I agree with everything you said. I especially appreciated the distinction between simulation and VR, which is something a lot of the simulation discussions miss.
Your view of consciousness is modelled by a VR. One big distinction is that a VR cannot be implemented with paper and pencil (or dominos). — noAxioms
I was imagining a clock that speeds up in its ticking to ape a convergent geometric series.
— fdrake
OK, that would be pretty much what has been the topic of discussion this whole thread. If it completes in finite time, it's a supertask. Don't forget the inverse case where the clock starts fast and slows down to its final tick. — noAxioms
The Zeno Wiki page doesn't mention a horse. Did I miss something? Ludwig V mentioned a horse too.
— fishfry
I am so sorry. I started a hare by mistake. — Ludwig V
The horse first appeared in this comment
Ryle might have called it a category mistake and talked of putting a physical harness on a mathematical horse or (better, perhaps) putting a mathematical harness on a physical horse, He and many others thought that nothing further needed to be said.
— Ludwig V
So a horse here is shorthand for whatever physical object one is trying to put into mathematical harness. Zeno's horse is the tortoise, or Achilles, or both. — Ludwig V
Given your reluctance to clarify the definition of the verb 'to start', I cannot respond appropriately to this statement. I gave a pair of options, or you can supply your own, so long as it isn't open to equivocation.I cannot start reciting the natural numbers in descending order because there is no first natural number for me to start with. — Michael
Your confidence in your own understanding is then stronger than my confidence in mind.I'm pretty sure that one comes down to being able to split the pieces up into pieces that aren't measurable — fdrake
Some of both, I'm sure. The impetus thing had to go (survived until Newton, not bad...), but one could argue that it is a poor description of inertia.I still wonder (when I haven't anything more important to wonder about) whether Aristotelian physics is not fully applicable or not physics or false. — Ludwig V
The smallest thing still is. Unfortunately the word got applied to something that was a composite object, and they kept that instead of renaming the assembly and keeping 'atom' for anything fundamental.when we finally split the atom. (Which, you will remember, was by definition unsplittable).
Not always. Just a minute. I know, Zeno doesn't give the time, but we've been using a minute. The way the scenario is described has no effect on the situation compared to a different way of describing it.I don't see the need for any other premise.Achilles is moving, and described as doing this in a way in which he will always have to move further before he can overtake the tortoise. — Metaphysician Undercover
They can't both be right?The Romans thought mind was a flow, because they had great waterworks, and so forth. We live in the age of computation so we think we're computers. — fishfry
I think I am, yes.You're agreeing with my point.
Anything analog can be approximated with digital. But anything digital can be perfectly implemented with analog. Searle is perhaps referencing property dualism? I don't know if I got that right. Can't seem to articulate the differences between the variants.I've seen Searle argue that consciousness is physical but not computational. Some kind of secret sauce found in living things and not in digital circuits. Don't know much about analog computation with respect to consciousness.
I guess I'm even more skeptical than Descartes. I win! I didn't pick my handle for no reason. I try not to leave anything unquestioned.As Descartes noted, I may be deceived, but there is an I who is being deceived.
VR says that all you know is potentially lies. You are not of this universe, but rather you are experiencing it. All very dualistic. The 'brain' in the body (if there is one at all, have you ever checked?) is not what's making any of the decisions.So the VR theory doesn't solve anything at all, it leaves the mystery of what my own consciousness is.
Definitely the former. But Elon musk is arguing for VR, and references Bostrom's paper to support it, so he has no idea what he's talking about.It's always been unclear to me which aspect of simulate/VR Bostrom is arguing.
or not a first tick. Zeno's dichotomy very much has a final tick. I can make a scenario that has a first and last, and gets singular in the middle somewhere. Just illustrating the classical snippet: Never say never.There is never a final tick in an infinite sequence, even if the sequence has a limit.
The Romans thought mind was a flow, because they had great waterworks, and so forth. We live in the age of computation so we think we're computers.
— fishfry
They can't both be right? — noAxioms
You're agreeing with my point.
I think I am, yes. — noAxioms
Anything analog can be approximated with digital. But anything digital can be perfectly implemented with analog. Searle is perhaps referencing property dualism? I don't know if I got that right. Can't seem to articulate the differences between the variants. — noAxioms
I guess I'm even more skeptical than Descartes. I win! I didn't pick my handle for no reason. I try not to leave anything unquestioned. — noAxioms
VR says that all you know is potentially lies. You are not of this universe, but rather you are experiencing it. All very dualistic. The 'brain' in the body (if there is one at all, have you ever checked?) is not what's making any of the decisions.
If you think about it, the view can be empirically tested. Not so much with the simulation hypothesis. — noAxioms
It's always been unclear to me which aspect of simulate/VR Bostrom is arguing.
Definitely the former. But Elon musk is arguing for VR, and references Bostrom's paper to support it, so he has no idea what he's talking about. — noAxioms
The comment above (and my reply) belongs in the other topic. I see you posted more or less the same question there. — noAxioms
There is never a final tick in an infinite sequence, even if the sequence has a limit.
or not a first tick. Zeno's dichotomy very much as a final tick. I can make a scenario that has a first and last, and gets singular in the middle somewhere. Just illustrating the classical snippet: Never say never. — noAxioms
I've repeatedly challenged you to name the first number not verbalized when we count forward 1, 2, 3, ... at successively halved intervals of time. — fishfry
Given your reluctance to clarify the definition of the verb 'to start', I cannot respond appropriately to this statement. I gave a pair of options, or you can supply your own, so long as it isn't open to equivocation. — noAxioms
I see that I misunderstood your idea. You are counting time backward. Ok I'll respond to that. But just wondering, when you realized I misunderstood you earlier, why didn't you point that out?
Ok. Suppose that I start at 1 and count backward through 1/2, 1/4, 1/8, ... — fishfry
Ok. Just talking about standard mathematical sequences. It's a common misunderstanding in this thread. The sequence 1/2, 3/4, 7/8, ... has a limit, namely 1, but no last element.
The sequence 1/2, 1/4, 1/8, ... also has a limit, namely 0, and no last element. But if you put the elements of the sequence on the number line, they appear to "come from" 0 via a process that could never have gotten started. This is my interpretation of Michael's example of counting backwards. — fishfry
Anyway, I deny that Zeno in any way suggests that the overtaking will never take place. He just says that another step always follows any given step. — noAxioms
https://iep.utm.edu/zenos-paradoxes/According to this reasoning, Achilles will never catch the tortoise, says Zeno. — Internet Encyclopedia of Philosophy
Zeno Paradox 1: Achilles and the Tortoise
Achilles is a lightening fast runner, while the tortoise is very slow. And yet, when the tortoise gets a head start, it seems Achilles can never overtake the tortoise in a race. For Achilles will first have to run to the tortoise's starting point; meanwhile, the tortoise will have moved ahead. So Achilles must run to the tortoise's new location; meanwhile the tortoise will have moved ahead again. And it seems that Achilles will always be stuck in this situation.
Well, one could argue that it isn't a description of inertia, but of certain phenomena which are better described by inertia. Either way, impetus proved unhelpful and alternative conceptualizations proved more helpful.Some of both, I'm sure. The impetus thing had to go (survived until Newton, not bad...), but one could argue that it is a poor description of inertia. — noAxioms
You are right that the historical contingency should make us suspicious. (Descartes, by the way, has a description of statues "animated" by a hidden hydraulic system - I think in Versailles). But I don't think the process is simply over-enthusiastic. It seems reasonable to try to apply a new discovery as widely as possible. That way, one discovers its limitations.That's my point. The Romans thought mind was a flow, because they had great waterworks, and so forth. We live in the age of computation so we think we're computers. The historical contingency is an argument against the theory, not for it. — fishfry
Oh, I don't know. Given the conceptual revolution that happened when sub-atomic physics arrived, it's not a bad idea to signal the change by leaving atoms where they were.The smallest thing still is. Unfortunately the word got applied to something that was a composite object, and they kept that instead of renaming the assembly and keeping 'atom' for anything fundamental. — noAxioms
That's more or less one Ryle's favourite arguments against dualism.So the VR theory doesn't solve anything at all, it leaves the mystery of what my own consciousness is. — fishfry
Clearly "<divide by> 2" is not applicable at 0. Would it be right to say that "+1" begins at 0 and has no bound and no limit, and that "<divide by> 2" begins at 1 and has no bound, but does have a limit? But they both they have a defined start and no defined end.The sequence 1/2, 1/4, 1/8, ... also has a limit, namely 0, and no last element. But if you put the elements of the sequence on the number line, they appear to "come from" 0 via a process that could never have gotten started. This is my interpretation of Michael's example of counting backwards. — fishfry
That's true. But different descriptions of the same situation can affect how we think about that situation. An additional difficulty, I suspect, is that our descriptions are fictional (sorry, thought-experiments), which means that the context is limited and evaluations of descriptions much more difficult. They need to be assessed in a different way - as useful or not.Not always. Just a minute. I know, Zeno doesn't give the time, but we've been using a minute. The way the scenario is described has no effect on the situation compared to a different way of describing it. — noAxioms
Yes. You cannot necessarily decide that just one way of looking at things is true and all others false. They are better evaluated as useful or not. I think that applies here.I think @noAxioms looks at Zeno in a different way. — Metaphysician Undercover
Yes. The difficulty is how to evaluate a starting-point. True or false isn't always relevant. Which means that it can be difficult to decide between lines of reasoning that have different starting-points.Without axioms it's difficult to get reasoning off the ground. You have to start somewhere, right? — fishfry
So are you going to conclude, with Zeno, that motion is impossible? or that Zeno is analyzing the situation in a misleading way?The paradox is like this. Both Achilles and the tortoise are moving, but the tortoise has a head start. So at t1 Achilles is at location A and the tortoise is at location B. At t2, Achilles reaches location B, but the tortoise has moved to location C. At t3, Achilles reaches location C, but the tortoise has moved to location D. As this procedure will carry on without end, Zeno concludes that the faster runner cannot overtake the slower. — Metaphysician Undercover
So are you going to conclude, with Zeno, that motion is impossible? or that Zeno is analyzing the situation in a misleading way? — Ludwig V
You mean because they allow the convergent infinite series?but only because the axioms of continuity and infinite divisibility are themselves misleading. — Metaphysician Undercover
Well, we've caught them out misleading us before, so I suppose they may be doing it again.So Zeno simply demonstrates how standard conventions are actually misleading us. — Metaphysician Undercover
Is the direct spatial route not available because it contains a convergent regress?And so, fundamental particles take every possible path when they move from A to B, because the direct spatial route does not allow them to get ahead of the tortoise. — Metaphysician Undercover
I replied to much of your post, but all over there.Yes. Let's talk about this over there. — fishfry
In that case I reject your premise. The lack of a first step does not prevent the beginning of the task, which is simply the transition from the time prior to any of the steps being taken, to the time during which steps are being taken.Just the ordinary meaning of "start", e.g. "begin". — Michael
I described exactly how to do that, and you found no fault with it, choosing instead to try a different wording of your additional premise. Why does my description fail? What step is missed? None, and it's done in finite time, so you apparently cannot find fault except by asserting additional premises, all of which take the form of asserting a need to perform a step that by definition doesn't exist.You ask me, right now, to recite the natural numbers in descending order. How do I begin to perform this supertask? — Michael
I know the story. You seem to have reworded it for your purposes, since the quote you give does not come from that site, but the site also seems to be conveying the story in its own words, not as reported by Aristotle.The paradox is like this. — Metaphysician Undercover
Yes, and without justification, or at least without explicitly stating the additional premise that makes the conclusion valid.Zeno concludes that the faster runner cannot overtake the slower.
Same thing. Does not follow.Other quote:
... And it seems that Achilles will always be stuck in this situation.
Yes, it affects how we think of them. It doesn't effect the situation, despite all the assertions to the contrary by several members.But different descriptions of the same situation can affect how we think about that situation. — Ludwig V
A thought experiment is a valid method of deriving conclusions from premises. They only get fictional if the premises are faulty, such as the lamp, a device which cannot physically operate as described.[/quote]An additional difficulty, I suspect, is that our descriptions are fictional (sorry, thought-experiments)
The lack of a first step does not prevent the beginning of the task — noAxioms
I described exactly how to do that — noAxioms
Yes - unless it is a fictional situation - whether in the philosophical or the literary sense.Yes, it affects how we think of them. It doesn't effect the situation, despite all the assertions to the contrary by several members. — noAxioms
That may explain why I have been confusing them. Thanks for that.A thought experiment is a valid method of deriving conclusions from premises. They only get fictional if the premises are faulty, such as the lamp, a device which cannot physically operate as described. — noAxioms
I have wondered whether one could replace the Thompson lamp with a question, such as whether the final number was odd or even. That would work if you start with an odd divisor and don't express everything in decimals. Perhaps it would work for all examples if you ask whether the number of steps taken is odd or even when the minute is up. I think. — Ludwig V
You mean because they allow the convergent infinite series?
Mathematically? Physically? (I'm inclined to think you mean physically, because of your reference to fundamental particles.) — Ludwig V
Is the direct spatial route not available because it contains a convergent regress?
What path does Achilles take? (I assume he is not a fundamental particle.) — Ludwig V
I know the story. You seem to have reworded it for your purposes, since the quote you give does not come from that site, but the site also seems to be conveying the story in its own words, not as reported by Aristotle. — noAxioms
The second is the so-called 'Achilles', and it amounts to this, that in a race the quickest runner can never overtake the slowest, since the pursuer must first reach the point whence the pursued started, so that the slower must always hold a lead. — Aristotle Physics 239b 14-17
Yes, and without justification, or at least without explicitly stating the additional premise that makes the conclusion valid. — noAxioms
Get involved in philosophical discussions about knowledge, truth, language, consciousness, science, politics, religion, logic and mathematics, art, history, and lots more. No ads, no clutter, and very little agreement — just fascinating conversations.