What does this mean, to produce a reflection of a vector? You refer to a "mirror", but surely no one holds a mirror to a vector field. What kind of material might be used to create such a reflection? I ask because it's possible that the weird reflection properties you refer to, are a product of the method employed to create the reflection. — Metaphysician Undercover
You actually mirror the vector in a mirror, like a straight arrow. In curved spacetime the vector becomes an object with variable length..You inverse one of the components, in a suitable base. Sometimes front to back, when the mirror is perpendicular to the arrow, sometimes, the length direction, when the mirror is parallel. The velocity vector stays the same, so vXB doesn't change if you turn B around (which is a reflection).
Neutrinos change tò non-observed neutrinos in the mirror. It is claimed they actually exist, but that's a myth I don't believe. In a mirror universe right-handed anti-neutrinos might exist. An idea I think is right, but which will stay a myth some time.
I must admit, I do not understand "complex numbers". Wikipedia tells me that complex numbers are a combination of real numbers with imaginary numbers. But I apprehend imaginary numbers as logically incompatible with real numbers, each having a different meaning for zero, so any such proposed union would result in some degree of unintelligibility. — Metaphysician Undercover
The complex plane combines real with imaginaries. There are a zillion interpretations, but the best way for me is that imaginary numbers and rotation in the plane are connected, like so-called quaternions can represent rotations in 3d space. A multiplication by e^(iq) rotates the number in this plane by q radials. Every wavefunction is connected to complex numbers. You can add them like 2d vectors and their difference gives interference. The length of the squared number gives a probability density. Or probabilities in the case of discrete variables.
This is the part which really throws me. How does a physicist dealing with fields distinguish between potential and kinetic energy? — Metaphysician Undercover
That, in fact, perplexes me too (it was one of these bot thoughts...). Kinetic energy is true energy of particles moving. The massless gauge fields (I don't think there are truly massive ones like the W and Z) contain potential energy only. To become actual when a matter particle (non-gauge particle) absorbs it. We observe that kinetic energies of matter particles, change. So we posit a compensating energy (like a compensating A-field to keep the Lagrangian the same (one could have started from a Hamiltonian). We can globally gauge this A field without changing E and B. like we can globally gauge a potential energy. This doesn't make the total potential energy (which curves spacetime!) unspecified though, as it's connected with global phase rotations that doesn't change the physics. In the Böhm-Aharonov effect the reality of the A-field and global rotations is observed. Only E and B were supposed to be the real existing fields, which were mathematically reduced from A. Gauging E and B globally affects the physics. Gauging A not necessarily, for a specific gauge function. You can even have an A-field without charges, like in the BA effect there is no E or B field but there is an A-field present.
Which was first, the matter fields or the gauge fields? Well, you need a matter field to generate a gauge field, but you need gauge fields to excite particle pairs from the vacuum. Or, in QFT jargon, to excite a matter vacuum bubble, a closed propagator line, by means of two real photons. But the real photons are in fact long-lived virtual ones, connected to other electrons by a real propagator, like all real electrons are coupled with an anti-part somewhere in spacetime, so electrons are part of real but long lived quantum bubbles of electrons and positrons (here I diverge from the establishment!).
How can potential energy be real energy? Why do two separated equal charges have a higher pot. energy than two close by? The particles have kin. energy, move away, after which their kin. energy is reduced and pot. energy increased? The PE goes in the virtual A-field, but how? Strange indeed. But the virtual A-field (which encodes stationary A and B fields, virtual photons, while the changing ones are the real A field, real photons) just does because we impose it.