If I understand correctly, the classical "electromagnetic field" which is a property of electrons, can be represented as two distinct fields, electric field and magnetic field. I understand the electric field (E) to be spatial, representing a spatial relation to the position of the electron. The magnetic field (B) I understand as temporal, representing the changing position of the electron. If I understand you correctly, you are saying that the relationship between the E field and the B field, which ought to represent "electromagnetism", is not strictly invariant, so there is a need to introduce an A field to compensate. I would conclude that the relationship between space and time is not invariant. It is made to appear as invariant through the use of the A field. If you can explain where this interpretation is misunderstanding, or deficient, I'd be grateful. — Metaphysician Undercover
I think it was a female bot that called me a bot. They tend to react quite emotionally. Especially when they don't understand WTF their male fellow bots are talking about.No, seriously... Sorry for the late reply. I got a bit entangled in this field last days. I traveled from the big bang (the ones in front of us and the ones starting behind us), mass gaps, pseudo-Euclidean metrics, closed, presymplectic differential- and two-forms, Poincaré transformations, the Wightman axioms, tangent-, cotangent, fibre, spin bundles, distributions, superspace, gauge fields (resulting from differential 2-form bundles), correlations (Green's functions), Lie groups and Grassman variables, operator valued distributions, point particles and their limits, to the nature of spin and spacetime, spacetime symmetries, lattice calculations as a non-perturbative approach, the non-applicability of QFT to bound systems, a mirror universe, composite quarks and leptons (no more breaking of an artificial symmetric Higgs potential!), viruses falling in air, and of course symmetries. I just want to know! Consequence of the story of science we are told already at young age. Even obliged to learn at our schools... It's a nice story though. My wife had to suffer from my apparent absence. With Christmas even... Well, I'm out of it, luckily. We saw a nice movie ("Don't look up", which somehow reminded me of this Corona era, the look-uppers and don't-look-uppers being the vaxers and non-vaxers; there was a nice quote from a Jack Handey: "My grandfather died in his sleep. While the passengers in his bus screamed in agony". I'm not sure what the connection with the movie was. Which was about an astronomy professor with his assistent who discover a meteorite on collision course with Earth and all ensuing madness; funny and serious at the same time. A symmetry?), and after I have given you this answer, there is the relief of closure.
The story of the A-field. Classically, the A-field is a contravariant four-vector, with the electric potential as time component, and the magnetic vector potential as the space part. Contravariant just means that the component values get bigger/smaller if the base vectors get smaller/bigger (derivatives, the change per length, get smaller if you go to smaller base: 10 per meter becomes 0.1 per centimeter, hence derivatives are covariant).
You can apply gauges to this A-field without changing the E-field (not the electron field!) and B-field. The magnetic field is an electric field also, but it is seen only when charge moves, and its effect is only felt by charge moving in it. It's a "relativistic E-field" in the sense that relative velocity causes the electric field to compress in the direction of motion. Hence its connection with being the space part of the A-field. It's a pseudo-vector and only gives a force when a charge has velocity in the vector field. The exterior product with velocity (and charge) gives the force, which is just an electric force. In an EM wave the are perpendicular, like you envisioned with the two planes. A charge feels the E-field and the magnetic gives an electric (caused moving charges elsewhere) which lies in a plane perpendicularly to it, with a direction dependent on the velocity of the charge.
If two charges move parallel in space, with equal velocity, they experience different fields as when standing still. What is an electric field only in the frame of non-moving charges, becomes a combination of E and B in a frame in which the both move. The time part of the A vector aquires a non-zero spatial part (in a fixed gauge) when the charges move. The E field gets smaller while the B-field increases (the length of the A vector is Lorentz invariant. So the decreased E-field is compensated by the appearing B-field, so the total force is the same in both frames. I think this is the compensation you refer to.
The B-vector is a pseudo-vector. It has weird relection properties. If the vector is reflected in a mirror parallel to it, it changes direction. When reflected in a mirror perpendicular to it, it stays the same. Contrary to the E-field.
Moving on to QFT. The A-field is a field that is not a part of the electron field. It is introduced to compensate for changes in the electron field (a Dirac spinor field, like that of quarks and leptons, and probably two massless sub-particles). If you gauge the electron field [this field assigns to all spacetime points an operator valued distribution (which creates the difference with classical mechanics which uses a real valued function), the operator creating particle states in a Fock space], you
mentally rotate the particle state vectors in the complex plane. All the states can be seen as vectors in a complex plane (the plane of complex numbers). You have to rotate space twice to rotate such a vector once, hence these are spin 1/2 spinor fields. The local gauge rotates them differently at different spacetime points. This has an effect on the Lagrangian describing the motion, i.e.the integral over time being stationary, the difference with the classical case being that all varied paths
are in facts taken, with a variety of weights.
Now, for the Lagrangian (which is the difference between kinetic and potential energy, like the Hamiltonian is the sum) to stay the same, a compensation has to be introduced. That's the A-field, which is a potential energy inserted in the Lagrangian since we started from a free field. Why should the Lagrangian stay the same? That's an axiom. But a reasonable one.
Now you can say the A-field is caused by the symmetry of the Lagrangian under the U(1) gauge. But... You can just as well say that the gauge field comes in the first place, and that it causes the Lagrangian to stay the same. There are interactions (by means of an A-field), and these give a gauge symmetric Lagrangian. The symmetry runs behind the facts, so to speak. Symmetry can indeed only be es
tablished after manipulations, like that of an equilateral triangle. Some parts of it have to be compared with other parts, and there is no pre-existing thing like symmetry to which the parts have to obey. Of course,
afte arranging themselves in a certain way, there can be symmetry. Even if you draw a triangle when you see one in your mind, the image arises from three equal parts. Like the A-field induces a symmetry by keeping the Lagrangian the same.
Can a symmetry exist on its own? Well, symmetry means that aspects stay the same. Like the combination of the kinetic and potential energy, or like the distribution of particles on the corners of the triangle. Do these aspects conform themselves to a symmetry? The corners of the triangle can be created in similar circumstances. They have to be compared to know if they are the same, like potential and kinetic energy after a gauge. Are there symmetry principles lying at base of nature? If things stay the same, symmetry follows, but to say symmetry lays at the base? I don't think so, and the present-day urge in physics to symmetrize is dangerous, because it projects sameness on stuff that's not the same. As I already briefly mentioned, I think there is no symmetry on the basic level, after which a breaking of this symmetry gives rise to difference. It is said that the symmetry of the electroweak interaction at high energy (meaning that both forces are the same, stemming from the same gauge, which, by locally varying it gives rise to the EW force like the A-field in the EM case) is a unique force, but carried by four massless particles, like the photon for the A-field. For low energies the Higgs field falls into the rim of the potential energy form, thereby creating a weird vacuum with finite field values (normally, for a vacuum the fields are zero particle fields). I think the desire for symmetry got the upper hand, which made Higgs create his strange field. Well, actually to account for massive gauge bosons, which can be addressed in a more natural, less artificial way. The mechanism was used to artificially unify the weak and EM force (which is a completey different unification from the unification of E and B, which actually
are the same (under spacetime Lorenz rotations).
Nice thread! You got me thinking...