Ok. For things in the real world, they are already in some order, even if it's a complete state of disorder. Even a completely disordered collection of gas molecules in a container, at every instant each molecule is wherever it is. And that set of coordinates, locating every molecule in space, is the order.
I get that. But by the same token, there is no preferred order. Suppose for example that I got my schoolkids from the playground to line up single-file in order of height. And now YOU come along and say, "Ah, that is the inherent order, and all other orders are disorders of that."
But of course your observation was a complete accident. I could have lined them up alphabetically by last name.
So even among physical objects, if we allow that they are always in some order, even if it's disorderly; but nevertheless, there is no preferred or inherent order.
I believe you are saying there's an inherent order, have I got that right? — fishfry
I think we have to look at context here. What is our subject of discussion, what are we talking about here? Are we talking about things (individuals), of which there is a multitude, or are we talking about a group (set) of individuals, of which there is one? Your description above, seems to imply the former. You are talking about separate things, many schoolkids, and there is many possibilities as to the order they could have. On the other hand, if you were talking about the group as a whole, as your subject, then the parts of that group, the individuals, must have the order that they have at that time, even though it could be different in past or future times. If you were talking about the same individuals in a different order, this would require a change to that specific group, so you would be talking about that group, at a different time, because you'd be talking about the individuals, changing places.
You might understand this better through what is known as internal and external properties. To each individual, as a subject, its relations to other individuals are external properties. To the group, as a unit, and the subject, the relations between the individuals is an internal property.
You talk about the schoolkids as distinct individuals, where the various relations between them are the external properties of each and everyone of them. There are no internal relations here. Each schoolkid is a subject to predication, age, height, etc.. and you might produce an order according to those predications. The order is external to each schoolkid, people say it transcends, and changing the transcendent order does not change any of the schoolkids in anyway.
Now, let's take the group as a whole, as an object, and produce a corresponding subject, the set, and make that our subject. Since the whole group is our object of study, any change to the order of the individuals is an internal change to that object, therefore a change to that object itself. The order of the individuals (as the parts of the whole) is an internal property of that object, and a change to that order constitutes a change to the object, which we must respect as predicable to the corresponding subject. Therefore we can say that the order of the individuals, as the parts of the whole, is an intrinsic property of the whole, which is represented as the set.
Notice however, the switch from "subject" to "object", and this I believe is the key to understanding these principles. There is an implicit gap, a separation, between the meaning of "logical subject" and "physical object". When we make a predication, "the sky is blue" for example, "the sky" is the subject, and if there is an object which corresponds with that subject, the predication may be judged for truth. However, we can manufacture subjects and predications with complete disregard for any physical objects, and so long as we have consistency, we have a valid "subject", with no corresponding object.
Consider the following proposition, "There is a group of schoolkids". We have a propositional subject, without a corresponding object, what some people would call "a possible world". Since there is no assumed corresponding object which would cause a need for conformity, we can predicate any possible order we want, so long as it is not contradictory. The hidden problem of formalism which I referred to lies in the naming of the group, "schoolkids". That name needs to be clearly defined and the definition will place restrictions on what can be predicated without contradiction.
Perhaps, we can remove these restrictions, by making the things within the group, the elements of the set that is, completely nondescript. "There is a group of nondescript things". We still have the name "things", with implied meaning, so this name has to be defined, and this would put restrictions on what we can predicate. So we go to a simple symbol, "x" for example, and assume that the symbol on its own, has absolutely no meaning, and this would allow any individual predication whatsoever without any risk of self-contradiction. X is a subject which has absolutely no inherent properties.
It might appear like we have resolved the problem in this way, we have a subject "x" which can hold absolutely any predication, so long as the predications don't contradict.. However, when we assume that the subject has no inherent properties, we disallow any predication because the predication would be a property and this would contradict the initial assumption. So this starting point allows no procedure without contradiction.
Now look what happens when we say "there is a group of x's". There is actually something implied about x, which is implied simply by saying that there is a group of them. It is implied that x has a boundary, separation, etc.. We may start with the assumption that there is no intrinsic properties of X, but as soon as we start to predicate, we negate that assumption. And the symbol, x, without any predications is absolutely useless.
Well now that you mention it, no. 1, 2, 3, ... is NOT the inherent order of the set N
, believe it or not. On the other hand it sort of is, in a sneaky way. Von Neumann defined the symbols 1, 2, 3, ... in such a way that n∈m
∈
if it happens to be the case that we want n < m to be true. — fishfry
I agree, what I meant is that this appears to be the inherent order, but it's not necessarily, that's why I went on to say that we can deny that order.
I know this is hard for normal humans to accept, since it's pretty obvious that 1 < 2 < 3 and so on. But mathematicians insist on being picky about how numbers and other things are defined. In the set-theoretic view of modern math, the numbers 1, 2, 3, ... are defined as particular sets, with no inherent order; and then we impose their order by leveraging the ∈
∈
operator. — fishfry
I think I see the need for this, and so I understand it.
Have I got any of that right? — fishfry
I think so, but I also think, that sort of inherent order has minimal effect, and the real issue comes up with the restrictions, or limitations to order which are constructed. What I am arguing is that how the inherent order manifests, is as a limitation to the order which one can select. If there is absolutely no inherent order, then we can select any order, but if there is limitations to what can be selected, we cannot choose any order. The examples you give are, I believe, selected, therefore they're probably no true inherent order. The example I gave, is that we cannot give 2 and 3 the same place in the order, they cannot be equal, so we need to proceed toward understanding how this limitation exists.
Anyway, back to the question. How do we know that 2 and 3 are not the same set?
Well 2∈3
2
∈
3
, but 2∉2
2
∉
2
.
Therefore by extensionality, 2≠3
2
≠
3
, because they don't have exactly the same elements.
Perhaps you can begin to see the virtues of working a the set level separately from its order properties. We can see the mechanics of how to use the axiom of extensionality. No order properties are needed to determine that 2 and 3 are different sets. It's just a matter of ignoring hypotheses that you don't need for a particular argument.
Nobody is saying that a given set doesn't have an order, as well as a lot of other stuff. A topology, some algebraic operations, a manifold structure perhaps. But we can learn a lot just from restricting our attention to the membership relation and seeing what we can learn just about that. — fishfry
So this is where the real problem lies, in defining a symbol, such as 2 or 3, as a set. Check back to what I said about the difference between internal and external properties. The subject now is a set, say 2, and a set necessarily has internal properties. We have the elements which compose the set, 0,1, which are also sets. As the set is also related to other sets, it has external properties, represented by the ∈
operator. The external properties are not necessary, and are a matter of choice, but whatever choice is made, that choice dictates the nature of the internal properties.
Now here's where I think the illusion lies. A set necessarily has internal properties, even though there may be infinite possibility as to the nature of the internal properties, making the specific nature of the internal properties dependent on choice, in this case von Neumann's choice. The illusion is that since the specific nature of the internal properties is dependent on a choice from infinite possibilities, it would therefore be possible to have a set with no internal properties. Clarification of the illusion implies that a set cannot exist prior to the choice of external properties, which dictate the internal properties. Internal properties are essential to "a set", and so a set has no existence prior to the choice of external properties, which determine the internal properties. This makes the empty set, as a set with no internal properties, impossible. The problem now, is what is zero? It can't be a number, because numbers are sets, and an empty set is impossible.
Then you have been proven wrong. I don't need to mention or consider or use any of the order properties of 2 and 3 to determine that they're different numbers. — fishfry
I think you misunderstand. As I explain above, you refer exactly to the internal (intrinsic) properties of 2 and 3, as sets, to show that they are different numbers. What the set theory has done is denied order as an external property of those things, 2 and 3, as numbers with order relative to other numbers, and made it into an internal property of those things, as sets. An internal property is an intrinsic order. The fact that the intrinsic order is ultimately dependent on choice is irrelevant, because some order must be chosen for, or else the system would be meaningless.
Entirely without rational basis. This para is a wild generalization of your complaint about 2 and 3, but I already showed how we can distinguish 2 and 3 using only their membership properties and not their order properties. — fishfry
No, you've simply shown how external order has been switched for internal order. And now I've shown the problem which arises from this switch, the contradictory, therefore impossible "empty set", which makes the inclusion of zero an inconsistency.
You are thrashing away at a strawman you've created out of your imagination, and under the mistaken belief that we can't tell 2 from 3 without their order properties. But we can. — fishfry
As I say, the idea that you've gotten rid of the order properties is just an illusion. The order inheres within each individual number, as the definition of that specific set. Rather than simply being an external property of a number, as an object, and how it relates to other numbers, order is now an internal property of the number itself, as a set..
No, you are consistently wrong about this. If A and B are sets and I can prove that A = B, then A and B are the same set. They are in fact the identical set, of which there is only one instance in the entire universe. They are NOT "two copies" or two distinct entities that we are calling the same by changing the meaning of the word "same." — fishfry
I argue the exact opposite, that you are consistently wrong about this. It is exactly "two copies", just like the word "same" here, and the word "same" here, are two distinct copies, even though we say it's the same word. Look, we are talking the meaning of symbols here. "A=B" means that that symbol A has the same meaning as B, it does not mean that A signifies the same entity as B, without additional information. However, the additional information in this case indicates that what is signified by A and B is a set, "the same set". But a set is not a thing, it is a group of things, grouped by a categorization such as type. Therefore this is an instance of "the same meaning", signified by A and B (indicated by "type"), not an instance of the same entity signified by A and B. This is just like when we use the same word twice when the word has meaning, rather than referencing a particular object. We say that the word has the same meaning, just like we might say A and B have the same meaning, in your example.
DUH that is what it MEANS to be the same set. That is the ONLY thing it means to be the same set. — fishfry
Exactly, and this is a different meaning of "same" from the meaning of "same" in the law of identity. That is the point. In the law of identity "same" means a lot more than simply having the same members (what I called a qualified "same"), it means to be the same in every possible way ("same" in an absolute, unqualified way),
Yes that is what it MEANS for two sets to be the same. That they have the same members. That's ALL it means and EVERYTHING it means.
You simply can't accept that and I don't know why. — fishfry
I totally agree with that, that's what "same" means in this context. The problem is that it does not mean what you stated above: "They are in fact the identical set, of which there is only one instance in the entire universe". The set is an imaginary thing, indicated by meaning, it is not something in the universe. So it's not even coherent to say that there is one instance of that set, it's not even a thing which has an instance of existence, it's just the meaning of a symbol. So you speak of "the same set", and claim there is only one instance of that set, but this would be taking a different meaning of "same", which refers to instantiated things, and applying it to "same set", which really means having the same meaning, and not referring to one instantiated thing. Do you see the difference between referring to one and the same thing with a name, "MU", and using a word which has meaning, like "person", without any particular thing referred to? Person refers to a type, so it has meaning, just like "set" refers to a type, so it has meaning. These do not refer to instantiated things of which we could say there is one instance of, they refer to ideas.