Tabled summary of §1:
(Ahh, I messed up the last bit of this table: the type of measure for discrete manifolds should be one magnitude as a measure of another, not as part of another. I copy-pasted the wrong text!).
Now, the tricky thing is to understand the two types of measurement for manifolds. I think a visual representation will be helpful:
(1) Superposition of magnitudes:
(2) One magnitude as part of another:
It is this second form of measurement, conducted on continuous manifolds which cannot be superposed, which "forms a general division of the science of magnitude in which magnitudes are regarded not as existing independently of position and not as expressible in terms of a unit, but as regions in a manifoldness." The language in this is a bit archaic, but a 'general division of the science of magnitude' can be translated into something like "this kind of measurement is one kind of measurement in a larger 'science of measurement' which also includes other kinds of measurement".
Note the two conditions of this kind of measurement:
(A) The magnitude cannot be regarded as independent of position (within the manifold).
(B) The magnitude is not expressible in terms of a unit.
Which one can summarise as: the measure of a magnitude of this kind is immanent to the manifold itself, and not extrinsic to it. Gonna include a quote from Manuel DeLanda which I find very helpful in explaining in why this kind of thing is novel in math:
"In the early nineteenth century, when Gauss began to tap into differential [mathematics], a curved two-dimensional surface was studied using the old Cartesian method: the surface was embedded in a three-dimensional space complete with its own fixed set of axes; then, using those axes, coordinates would be assigned to every point of the surface; finally, the geometric links between points determining the form of the surface would be expressed as algebraic relations between the numbers. But Gauss realized that the calculus, focusing as it does on infinitesimal points on the surface itself (that is, operating entirely with local information), allowed the study of the surface
without any reference to a global embedding space. Basically, Gauss developed a method to implant the coordinate axes on the surface itself (that is, a method of “coordinatizing” the surface) and, once points had been so translated into numbers, to use differential (not algebraic) equations to characterize their relations. As the mathematician and historian Morris Kline observes, by getting rid of the global embedding space and dealing with the surface through its own local properties 'Gauss advanced the totally new concept that
a surface is a space in itself'.
The idea of studying a surface as a space in itself was further developed by Riemann. Gauss had tackled the two-dimensional case, so one would have expected his disciple to treat the next case, three-dimensional curved surfaces. Instead, Riemann went on to successfully attack a much more general problem: that of N-dimensional surfaces or spaces. It is these N-dimensional curved structures, defined exclusively through their intrinsic features, that were originally referred to by the term “manifold”. Riemann’s was a very bold move, one that took him into a realm of abstract spaces with a variable number of dimensions, spaces which could be studied without the need to embed them into a higher-dimensional (N+1) space" (Delanda,
Intensive Science and Virtual Philosophy).
--
The end of §1 basically tries to say why this kind of measurement is so important: it allows one to make good on certain mathematical advances by Abel, Lagrage, etc, and it allows for a fuller investigation of multiply extended manifolds.