Actually, I'm looking for compromise, by allowing that a descriptive rule implies a material connection. — Metaphysician Undercover
Well I do agree that having a common description imply some material connection, but that connection is not the connection that imply inseparability. You can call these connections "loose" connections, as opposed to "tight" connection which is what causes continuity (inseparability), so if object K has tight connection to object L then they are in continuity, i.e. they are not separate, ie. they are in
contact; while if object K has loose connection to object L then they are separate. Now what I call as an "individual" or a "unit" or sometimes I call as a "singular", this is an object that posses tight connections between parts of it in such a manner that it is not the totality of two parts that loosely connected to each other, and at the same manner the object itself must not possess tight connections to external objects. Now if we have many individuals such that there is a description that isolates them from others, i.e. there is a description common to all of them but not to other objects, then those individuals would be said to be LOOSELY connected by this descriptive joining, so they are still separate form each other. Now this would be an object! I call it a collection of objects satisfying this property, so it is a collection and its elements are the individuals that are loosely connected in it. So far for collections.
But this is not enough. You need representatives, or actually NAMEs, you can also call them tokens, or labels, those would be singular objects (units) that we arbitrarily assign to each collection, but provided that the assignment works along unique lines, I mean each collection is assigned only one name, and each name only names one collection. So although the choice of which object would name a collection is arbitrary, but once done naming of other collections cannot use that name, so the naming function is not totally arbitrary. Of course this is not Ontologically innocent, it involves adding unrelated material into the picture!
But why names? why should we assign an external object that is singular to act as a name to a collection that may have multiple elements, so why represent a multiplicity by a singular object? With external naming, there is no clear intimacy between the name and what is named, the assignment is arbitrary for that particular aspect. And this is what actually happens with naming generally, its artificial, for example the names used in language are all arbitrary, there is no special connection between the string of letters "horse" and the animal group it is used to represent. So that's the question: why we should bring an external object that doesn't bear a necessary relationship to a collection and make it act as a name, actually a "representative" for that collection?
The answer is to develop a hierarchical account about collections! This cannot be done in an efficient manner without the use of singular names. The idea is that through this artificially made unique naming process, we can define a new relation, called "membership", that act to copy the relation of element-hood in collections but raises this relation to the name of the collection, and since names are singular objects so they can be elements of collections (while collections when they are non-singular objects cannot be elements of collections, so we can't have a hierarchy of collections in collections using directly the "element-hood" relation!!!), so all
elements of a collection wold be "
members" of the name of that collection. The "name" of a collection, is what we call as "set" in set theory. So for example the set of objects k,l, denoted by {k,l}, is actually the name given to the collection whose only elements are k,l. so k,l would be "members" of that set, i.e. they bear the membership relation to the NAME of that collection, which is the set itself. Through this copying process of elements to members, one can speak of a hierarchy of sets that are members of sets and so on.... And so indirectly speak of collections of collection of...This would give the powerful mainframe needed to interpret almost all of mathematics.
Now you might be suspicious, and actually object, to such a buildup. Since its pivotal rule is built up through an intermediary that involves some arbitrariness, which is the choice of a name per particular collection of course. So its like building a big building that involves multiple big junks of tightly connected material put on top each other using light joining material, so the the whole buildup is bound to fail!
I'd say it would be extremely difficult to make that hierarchical buildup without using names, I tried myself to figure out these possibilities. For example you can use various grades of tightness of connections, like in saying we have: degree 0 loose connection (which are the tightest connections), degree 1 loose, degree 2 loose, etc.... where for each i the i+1 loose connection is looser than the i loose connection. We can do that and define elements of a collection by those bearing the loosest kind of connection between each other and internally of course they use harder degree of connections, and so on...
This can be done but largely on disjoint collections. When there are overlaps, for example like with the case of power-sets, then here it would become very bleak. And even worst in trying to capture non-well founded sets, that it becomes even impossible to use this method for that sake.
So we needs NAMES, to do the intermediary role in developing a hierarchy of sets of sets of..,etc.. It is the simplest way to do it! And this proves to be very powerful logically speaking, that almost all of mathematics can be encoded in it.
This build-up is not due to me. It is largely David Lewis's idea. But here I used 'sets' as names, while in his approach he use them as collection of names. The approaches are equivalent, but mine is more extensional than his. Also related work can be found in point-set topology although taking different technical paths.
According to this line of thought of mine, to me, sets being names, then they out to be assigned only to "definable" collections. Because with naming procedure, you need name something that you can describe first. And so to me all sets must be parameter free definable, i.e. they must name collections that are parameter free definable collections. And naming must proceed in a hierarchical build up from the simplest to the most complicated in a step-wise manner. So definable collections that are not the result of that buildup cannot have names, and this include the collection of all singular labeling objects (names) , and of all singular names that do are not part of the collections they label, etc.. those collections usually called as "big classes", are not reach-able by a hierarchical naming build-up from below, so they cannot be named, even though they are definable!
The nice corollary to this line of thought is that it proves the axiom of choice! and actually of much stronger form of choice, of a definable global choice!
So having a pertinent line of thought about what sets really are, can solve some technical problems, like with the famous problem of axiom of choice here.