It's great how you've laid out what you see as a 'problemscape' in maths, that has been helpful, but (and I feel bad I didn’t think to specify this at first) I actually meant to ask what you thought an incomplete problemscape would look like in philosophy. The point being that I'm not sure how such a process would apply in philosophy even though I'm sure it does in maths. — Pseudonym
I certainly know what it looks like better in maths than in philosophy. The post was meant to draw an analogy from maths to philosophy without specifying all the moving parts. Largely because what the moving parts are in philosophy are a lot harder to specify and a lot broader.
I was hoping that the way I described the mathematical example didn't look particularly mathematical; containing the germs of what the corresponding things in philosophy would look like through a blurry-eyes translation from one to the other.
My first step in both types of philosophical problem would be to understand why it's a problem in the first place, I'd first want to know why it needed solving at all, what place they have in the wider problem hierarchy? Already, I'm not sure whether this step is even necessary in your maths problem. Do we need to know why integrals even need solving to approach a solution? I could certainly solve y=x+4 (much more my level) without needing to know why we might need to know X in terms of y, but I wouldn't dream of approaching a philosophical problem without such background. — Pseudonym
What's at stake in your presentation of the idea hopefully captures what's at stake in the problem in general. There's a mathematical procedure which links integrals to solutions, it's a very simple mathematical problem conceptually; you didn't have to come up with the steps or anything they contain on your own, you didn't have to come up with the integral notation, you didn't have to come up with the idea of an integral. All of that's background to the integral problem.
Maybe if I asked you 'find the area under this curve'; giving the bell shape of
... You'd be another Newton or Leibniz
and Descartes if you solved it in the manner expected, along with inventing a procedure to match curves to functions eh (a Hermite or a Laplace)? All of that ambiguity was removed from the problem because there are signposts in the problemscape already interpreting what the problem consists of and solution methods. They weren't there to Newton or Leibniz, even if they had the rule of Archimedes (a precursor to calculus) and Cartesian coordinates and functions to springboard from.
I smuggled in so much context with the examples and notation it isn't a wonder at all that you thought it doesn't resemble a philosophical problem. Perhaps the context of it is more clear now, as well as what removing it would give rise to as a problem (reinventing at least a century of math).
Since you mentioned ethics, let's take an alternate history of the utility monster. Imagine that you don't know anything about utilitarianism, and instead are asked 'is it right for all but one person to be in heaven, because that one person is unjustly in hell?'. Say you see a generality in the problem, it doesn't need the religious trappings. So the question could be refined to: 'is it right for all but one person to be in a blissful state because that one person is in abject, inescapable suffering?'. Or maybe the reverse; 'is it right that one person is in utmost bliss because the many are suffering?'
Then you'd probably need some justification for deciding whether it's right or not. Maybe you start trying to compare suffering and bliss on a scale; maybe one ice cream looks like it's worth a punch in the arm. So you imagine on a scale all these people being in the positive side a given amount, and that one person on the negative side a given amount and start to weigh the amounts... By that point you'd have invented a germinal utility calculus. Then you get the weird idea that, hey, what if one person's sensations are super extreme and they derive more bliss from things than others - a lot more -, do you then need to start centralising the distribution of happiness on the person, giving them far more than others, just to get the most happiness, additively, from the scale?
I wanna take the above as a paradigmatic, but oversimplified, set up of a problemscape in philosophy. You start having to do things like come up with conceptual machinery to compare gains against losses; happiness against suffering; implicit in this is an idea of the ethical decision being about the eventualities of your actions (resultant happiness/suffering... utility) rather than anything inherent to the action.
Then someone comes along from a different set of concepts and gives you a deontological response; 'firstly, it's wrong to centralise happiness like that because you couldn't, in principle, centralise happiness for everyone. That's a contradiction in terms. Secondly, I don't want to grant even the framework you're considering ethics; you're doing this stupid scale thing where suffering and pain are traded off against each other as if they, too, weren't part of actions.'
Then the proto-utilitarian invents 'biting the bullet', and discourse stops. Two irreconcilable, in native terms, frameworks about ethics which also disagree on an ethical dilemma.
On a meta-level, a lot had to be in place, in the background, to recognise this alternate histories as images of philosophical debates. The problemscape for setting up the problemscape is looking at a methodology for specifying methodology; a snake biting its tail that nevertheless must begin and end somewhere; the unbounded space of methodological considerations congealed and constrained through the slowly evolving background that makes sense of it retroactively. Inquiry occupies a liminal space between the already structured and the structuring of what is
now already there.
So, I don't think the approach I was taking was specifically addressing philosophy, I was trying to get at the general structure of inquiry of which, I assume, philosophy is obviously a part of. Perhaps another way of putting it; philosophy exists as a stratum of ideas and their embodiment in studying philosophy; the ideas modify the study, the study modifies the ideas.
Edit: if any of this seems somewhat trivial, good. I hope, then, it is
now trivially true of philosophy.