Comments

  • Logic of truth
    But it's the use of his ideas in wider philosophical discussions that made him his name.Banno

    "Made his name" is not definite enough for me know whether that's true or false. But, of course, Tarski is a giant in mathematics and philosophy, and his mathematics leads to great philosophical interest. He is one of my real heroes. A mind of deep of beautiful wisdom and breathtaking creativity.
  • Logic of truth


    There is no doubt that the schema has wide and pervasive application and interest throughout philosophy.

    But in one of the SEP articles it also mentions that Tarski's main [or whatever word was used] focus for it was for formal theories.
  • Logic of truth
    More on Putnam and Tarski - Panu RaatikainenRussellA

    I haven't carefully read that article, but are your own remarks dependent on the article? If so, should we take it that Raatikainen's summary of Putnam is correct? And do you agree with Putnam as he is summarized and reject Raatikainen's rebuttals? Or is it just certain parts of Putnam you think need to be answered?

    In other words, I don't know what specifically you would like me to agree with in Putnam.

    In the meantime, I'll respond to your own remarks, not necessarily vis-a-vis Putnam himself.

    the Criterion of Adequacy, and being a test of a definition, is formulated only in the metametalanguage (MML).RussellA

    I'm not sure. At first glance, I don't see that in a metatheory we can't state the criteria and prove that a certain schema upholds that criteria.



    Tarski always said that truth can only be defined for a particular formalized language, a language that had already been interpreted, where the meaning of the object language was fixed and constant.RussellA

    Of course.

    And that allows that a formal language can have different interpretations.

    If the interpretation has 'snow' denoting the frosty stuff you see on the ground in winter, and 'white' denoting the color of a surrender flag, then 'snow is white' is true per that interpretation.

    If the interpretation has 'snow' denoting the rising thing you see when you light a match, and 'white' denoting the color you see when you look at a matador's cape, then 'snow is white' is true in that interpretation.

    If the interpretation has 'snow' denoting the frosty stuff you see on the ground in winter, and 'white' denoting the color you see when you look at a matador's cape, then 'snow is white' is false in that interpretation.

    Etc.

    But I understand that it might be tricky. I'm not sure, but maybe Tarski is conceding that we can't have a truth definition that covers all interpretations, but only, for each interpretation, its own truth definition?

    Is that what you're driving at?

    In the event that the object language was reinterpreted, for example defining "green" as white, the language changes to a different language, requiring a different T-SentenceRussellA

    'green' isn't in the particular instance 'snow is white', so I think you mean.

    If 'white' denotes green, then

    'snow is white' is true iff snow is white

    is not true.

    But it is still true. Made explicit

    Let M interpret 'snow' as the frosty stuff, and 'white' as the color of a St. Patrick's day T-shirt, and the frosty stuff as not in the set of things having the color of a St. Patrick's day T-shirt.

    'Snow is white' is true per M iff the frosty stuff is the color of a St. Patrick's day T-shirt.

    Both sides of the biconditional are false. So the biconditional is true.

    it isn’t a logical truth that the (German) word ‘Schnee’ refers to the substance snowRussellA

    Of course.

    nor is it a logical truth that the sentence ‘Schnee ist weiss’ is true in German if and only if snow is white.RussellA

    Tarski's schema is a definition not a claim of a logical truth.
  • Logic of truth
    where exactly is "snow" denoted as snow and "white" denoted as white ? Because if not included within the T-sentence, then how can the T-sentence be formally correct ?"RussellA

    Do you mean this?:

    Where in Tarski's example is snow denoted by 'snow' and white denoted by 'white'? If not in the example, then how can the schema be formally correct?

    It's formally correct because it meets the criteria for formal correctness that Tarski specified, and which also are the usual criteria in mathematical logic.

    Just to review:

    Tarski is defining the adjective 'is true'. (More explicitly, for a given interpretation of a language, a definition of 'is true', or a definition of 'is true per the interpretation'.)

    A definition of that adjective will be of the form (let M be an interpretation of the language):

    'P' is true iff X

    or

    'P' is true per M iff X

    where what X meets certain criteria (the criteria of formal correctness).

    Tarski then says, 'P' itself will be X, so

    'P' is true iff P

    or

    'P' is true per M iff P

    And that is formally correct since it meets the criteria, and we show that it does

    If one claims that it is not formally correct, then one needs to show that one of the criteria is not met. Saying, "How can it be formally correct if [whatever]?" doesn't have culpatory weight, any more in form than "How can an airplane fly if ducks have feet?"

    Then the question you asked: Where is snow denoted by 'snow' and white denoted by 'white'? The answer, for formal languages, is in the interpretation of the language (the model for the language). The answer, for natural languages, is in the semantical assignments for words (usually per a dictionary or per the referential habits of speakers).

    Even though the T-sentence "snow is white" is true IFF snow is white is given in a Metalanguage (ML), it is assumed that in a Metametalanguage (MML) snow has been named "snow" and white has been named "white".RussellA

    I don't see why they can't both be in the same metatheory. Or is there a liar paradox problem that comes up? If so, I'd like to see a proof:

    Show if the metatheory gives an interpretation of the object theory and also a definition of truth, per that interpretation, of the language for the object theory, then that metatheory is inconsistent.

    That doesn't seem right to me.

    (Of course we know Tarski's theorem [simplified and roughly stated:] If if a theory has its own truth predicate, then the theory is inconsistent.

    Therefore, white is a necessary condition for snowRussellA

    Tarski doesn't say that. It's your claim, I guess.

    [There's redundancy in the rest of my post, because I want these points to come across in different phrasings:]

    Indeed, Tarski doesn't even say that 'snow is white' is true. Rather, he is merely giving an instance from a definition of the adjective 'is true'. The example can work even with a false statement:

    'Snow is black' is true iff snow is black.

    The schema follows by form alone, and does not depend on what happens to be true or false or even necessarily true or necessarily false.

    Even though the T-sentence "snow is white" is true IFF snow is white is given in a Metalanguage (ML), it is assumed that in a Metametalanguage (MML) snow has been named "snow" and white has been named "white".RussellA

    I don't see that the statement of the interpretation and the T-sentence can't be given in the same meta-theory.

    Tarski says, "Let us suppose we have a fixed language L whose sentences are fully interpreted."

    Yes, truth depends on interpretation of the language. A sentence can be true in one interpretation of the language and false in another interpretation of the language.

    So, when we talk about the truth value of 'snow is white', we take it implicitly that some particular interpretation has been given.

    Or we can make it explicit in this manner:

    Let M and Q be interpretations for a language:

    Examples:

    Let the language have the constant symbols 'c' and 'd' and a 1-place predicate symbol 'F'.

    Let M specify:

    domain = {0 1}

    'c' for 0

    'd' for 1

    'F' for {0}

    So:

    'Fc' is true per M iff Fc.

    So:

    'Fc' is true per M iff 0 is an element of {0}.

    So:

    'Fc' is true per M.


    Now let Q specify:

    domain = {0 1}

    'c' for 1

    'd' for 0

    'F' for {1}

    So:

    'Fc' is true per M iff Fc.

    So:

    'Fc' is true per M iff 1 is an element of {1}.

    So:

    So 'Fc' is true per Q.


    It is not assumed that we can only use an interpretation in which snow has been named 'snow' and white has been named 'white'. Rather, whatever 'snow' and 'white' name, the schema holds per that naming. If 'snow' named fire and 'white' named black, the schema would still hold. The schema does not dictate what 'snow' and 'white' should name. Indeed, what they name is interpretation-dependent. The schema works, per each interpretation. If a certain interpretation says 'snow' names fire and 'white' names black, then the schema still holds. My example of precipitation and chromaticity was conditional, and we may take that conditional as tantamount to an interpretation stipulating denotations. We could have stated the antecedent of the conditional so that 'snow' denotes fire and 'white' denotes black, thus tantamount to an interpretation stipulating different denotations from the usual ones, and the schema would still work.

    It just happens that the "standard" interpretation (i.e. semantic assignments in English) has 'snow' standing for snow (precipitation ...) and 'white' standing for white (the chromaticity ...), so that's the most intuitive interpretation to use as an example. The schema though does not depend on any particular interpretation; we could use some other set of semantic assignments for English words, and the schema still would apply.

    We could even say hypothetically that there's a natural language in which 'snow' stands for the thing we regard as fire and 'white' stands for the color we regard as black. The schema would still hold with that natural language taken as the standard one.

    Therefore, "snow is white" is true because i) snow is white, ii) snow is named "snow" and white is named "white"RussellA

    No, (ii) is not included in the schema. The same point I just made The truth or falsehood of 'snow is white' is not dependent on 'snow' naming snow (precipitation...) and 'white' naming white (the chromaticity...). No matter what you say 'snow' denotes and no matter you say 'white' denotes, 'snow is white' is true iff the thing you set as the denotation of 'snow' has the property [extensional sense] that you set as the denotation of 'white'.

    /

    I hope to take time to carefully read your remarks about Putnam.
  • Logic of truth
    where exactly is "snow" denoted as snow and "white" denoted as whiteRussellA

    I need to read the rest of your post carefully, but I am not familiar with people saying:

    [word] denoted as [thing]

    I guess you mean:

    [thing] denoted by [word]

    or

    [word] denotes [thing]

    I am not raising this as a mere grammar nit, but rather that we can get lost if we're not very careful to be clear what is denoting and what is denoted.

    Anyway, I suggest not saying:

    'snow' is denoted as snow

    But instead:

    snow is denoted by 'snow'

    or

    'snow' denotes snow
  • The Largest Number We Will Ever Need
    If, a big if, there did exist a finite number Nmax that could stand in for, salva veritate,∞, we could prove/disprove all mathematical conjectures via proof by exhaustionAgent Smith

    It might be the case that an ultrafinitist system would not be subject to the incompleteness theorem? I don't know. We'd have to see the system or at least a sufficient statement of its relevant properties.

    /

    Nothing can be understood to stand in for what you think the leminscate stands for, unless you say what you think the leminscate stands for.
  • Logic of truth
    Is the best course just to drop the term, then, as the nominalist recommends? Was my point originally.bongo fury

    With no comment on nominalism, I think you're right that it is cleaner not to drag in 'property'. But my original use of 'property' was not meant in a philosophically technical sense, but in an everyday sense to emphasize how the right side of the biconditional is substantively different from the left side (i.e. to highlight that the definition is not "circular"), and to do that without invoking set theoretic notions that are not everyday notions. But your suggestion is better for rigor and crispness.
  • Logic of truth


    Church says, "A property, as ordinarily understood, differs from a class only or chiefly in that two properties may be different though the classes determined by them may be the same (where the class determined by a property is the class whose members are the things that have that property). Therefore we identify a property with a class concept, or concept of a class in the sense [mentioned earlier]. And two properties are said to coincide in extension if they determine the same class." [italics original]

    I take that to be philosophical explication.
  • Logic of truth
    Typo?bongo fury

    Yes. I fixed it now. Thanks.
  • Logic of truth
    functions (argument forms) such that if the inputs are truths (the premises), the output is a ... further ... truth (the conclusion)Agent Smith

    I might see what you're getting at, but you've not put it in a way that is clear to me.

    We should take it in steps:

    (1) Df. An argument is an ordered pair <G C> where G is a set of sentences (the set of premises) and C is a sentence (the conclusion).

    (2) Df. A set of sentences G entails a sentence C iff for every model M, if all the sentences in G are true in M, then C is true in M.

    (3) Df. An argument <G C> is valid iff G entails C.

    (4) The pumpkin market has been seasonably slow. Farmers have been turning to other crops.
  • Logic of truth
    How does a system of logic handle truth/falsity?Agent Smith

    The standard method is the method of models

    Consistency: The law of noncontradiction (LNC). A truth may not entail a contradiction (p & ~p) for if ut does, it can't be a truth.Agent Smith

    The notion of 'consistency' is purely syntactical, it does not mention 'truth'. You've added past the definition (I don't know why you do that; why you wouldn't just take a standard definition as it is written without imposing other stuff on it). The definition is:

    A set of sentences S is consistent <-> S does not prove a contradiction

    An equivalent definition (since first order logic has explosion):

    A set of sentences S is consistent <-> there is sentence not derivable from S

    So the definition of 'consistent' is syntactic not semantic.

    The one sense in which you're close to something (though not part of the definition of 'consistency') is that if a sentence is true in any model then the sentence does not entail a contradiction. The reason is that entailment, by definition, preserves truth, and a contradiction is false in every model.

    Some compound statements are tautologies, true always, not semantically, but solely due to logical form e.g. (p v ~p) [the law of the excluded middleAgent Smith

    The more general notion is of sentences being validities:

    A sentence P is a valid <-> P is true in every model.

    So the definition of 'valid' is semantic, not syntactic.

    (Note: 'the sentence is valid' can also be said as 'the sentence is a validity')

    Some authors use 'tautology' for 'validity', but other authors (most?) say the tautologies are the validities that are valid by virtue of evaluation of their connectives alone. (And since sentential logic is decidable, it can be semantic evaluation or syntactical evaluation. In other words, we can look at the syntactic structure or we can look at the truth tables.)

    But (the context here is first order logic), due to the soundness and completeness theorems, a sentence is a valid iff it is provable from logical axioms alone. So the set of validities is the set of theorems of the pure first order predicate calculus.

    However, for predicate logic that is at least dyadic, there is no algorithm to test for validity, which is to say there is no algorithm for checking the form of sentences to see whether they are valid. However, in sentential logic and in monadic predicate logic there are such algorithms.
  • Interested in mentoring a finitist?
    (1) 'finitism' has different senses.

    (2) Perhaps it is not necessary to have infinite sets for an axiomatization of mathematics for the sciences. It's just that in order to evaluate a non-infinitistc axiomatization, we need to have it specified.
  • Logic of truth
    The T-sentence is intuitively appealing as a definition of truth for natural languagesBanno

    If I'm not mistaken, the 'snow is white' example was mainy to illustrate, while the main application of the Tarskian schema is for formal theories.
  • Interested in mentoring a finitist?
    Yes, with that algorithm, at no step is there generated an enumeration of all the natural numbers.

    But that doesn't prove that there does not exist a set whose members are all and only the natural numbers or that there does not exist an infinite set.

    And it doesn't prove even the weaker claim that it is not provable that there exists a set whose members are all and only the natural numbers or that it is not provable that there exists an infinite set.

    The non sequitur is:

    R does not provide us with W, therefore there is no T that provides us with W.

    One might as well say, "A hammer won't lift a beam, therefore nothing will lift a beam".

    If we want for it to be provable that there does not exist an infinite set, then we need axioms to do that.

    If we delete the axiom of infinity from ZFC and add the negation of the axiom infinity, then we prove that there does not exist an infinite set. But that theory is inter-interpretable with first order PA, which does not provide a calculus for the sciences.

    And if we merely want for it not to be provable that there does not exist an infinite set, then we merely need to delete the axiom of infinity from ZFC, and then we can't prove that there exists an infinite set and we can't prove that there does not exist an infinite set. And that theory does not provide a calculus for the sciences.

    This is to say that it is fine to mention the well known ostensive illustration of the notion of 'potential infinity', but that's all that is - an ostensive illustration of a notion; it doesn't even hint at how we would make a theory from it.
  • Interested in mentoring a finitist?


    How is that substantively different from Thompson's lamp?

    I already responded regarding Thompson's lamp.

    /

    I don't know a theorem of set theory that is rendered as "infinite processes can be completed".

    Set theory doesn't axiomatize thought experiments.
  • Interested in mentoring a finitist?
    I think it's quite easy to imagine a closed finite universe, for example a sphere of finite radius. It's a lot harder to fit in one's mind a sphere of infinite radius.keystone

    A sphere has infinitely many points in it.

    And is there such a thing as a sphere with an infinite radius? If I'm not mistaken the radius of a sphere is a real number, right?

    by and large I am completely convinced that the vast majority of modern math would retain it's value even IF actual infinities were banished.keystone

    We've come around full circle. Now circling for another orbit:

    To axiomatize mathematics sufficient for the sciences, without infinite sets requires not just deleting the axiom of infinity from (Z\R)+CC (ie. Z without Regularity but with Countable Choice), but a very different system. There are systems without infinite sets, but I don't know how well they do or how easy they are to understand and use.
  • Interested in mentoring a finitist?
    as actual infinities (rather infinitesimals) were banished from (mainstream) calculus and replaced with potential infinities (through limits)keystone

    No, limits use infinite sets. The standard axiomatization of analysis is ZFC. Ordinary modern analysis is decidedly infinitisitic. Maybe you're thinking of the banishment of infinitesimals?
  • Logic of truth


    Starting at "But a certain reservation" and ending where?
  • Logic of truth


    Merriam online has definientia with 'series' and 'enumeration'. (There's another definiens closer to your sense, but I don't think it's common, and especially I've never seen 'list' to mean 'set' in this kind of mathematics or logic.) Not a nit; 'set' (acutually 'subset of the domain') is the word to use.
  • Logic of truth
    second readingBanno

    Thank you very much for that, and for saying it. Refreshing to read something like that in this forum.

    "S" is true IFF X

    And we can't just substitute any sentence p for S and X.
    Banno

    'S' is true iff X

    is the general definitional form for a predicate symbol, whether 'is true' or other.

    Then Tarski wanted to specify what X should be for the definition of 'is true'.

    He came up with S.

    I don't see opacity or circularity.
  • Logic of truth
    I chose "list" by way of avoiding using a technical termBanno

    'set' is no more technical than 'list'

    The list is not in any particular order and might be innumerable.Banno

    I usually take 'list' as 'sequence' or 'series' or 'enumeration'.

    And since we're interested in hewing to Tarski, the term to use is 'set'.

    A 1-place relation symbol maps to a 1-place relation on the domain. (A 1-place relation on the domain is a subset of the domain.)
  • Logic of truth
    if the difficulties of opacity and circularity can be overcome.Banno

    What difficulties of opacity and circulaity?

    I don't know what sense of 'opacity' you have in mind.

    And Tarski's formulation is not circular. Indeed he stated a requirement that a definition not be circular, and he gave one that is not circular.
  • Logic of truth
    The thing about the first is, is it incontrovertible.Banno

    Right.

    But recall that my unpacking was a conditional:

    If 'snow' stands for blahblahblah and 'white' stands for 'bleepbleepbleep', then

    'snow is white' is true if and only if blahblahblah is bleepbleepbleep.

    That's a consequence of the Tarski formulation but not an equivalent (since the Tarski formulation doesn't have antecedents like that).
  • Logic of truth


    That is the basic idea.

    For a 0-place function symbol, the denotation is a member of the domain.

    For an n-place (n>0) function symbol, the denotation is an n-place total function on the domain.

    For a 0-place relation symbol, the denotation is a truth value.

    For an n-place (n>0) relation symbol, the denotation is an n-place relation on the domain.

    listBanno

    I prefer 'set' rather than 'list', since 'list' could be taken as a sequence of the things in the set, or even suggesting a countable sequence.
  • Logic of truth
    item and the list is closer to the strategy of designation and satisfaction Tarski adopts.Banno

    That's an excellent point.

    I like the second because it's illustrative. And I like the third because, as you observe, it is getting closer to the actual formal method (and also hews closer to Tarski's "plugging in" strategy).
  • Logic of truth
    the denotation is not the expression but the items themselves.Banno

    Of course the denotation is not the expression. The denotation is, formally, as given by the method of models.
  • Logic of truth
    Consider
    "The kettle is boiling" is true if [and only if] the kettle is boiling[.]
    "The kettle is boiling" is true if [and only if] the water in the kettle has reached the temperature at which its vapour pressure is equal to the pressure of the gas above it.
    "The kettle is boiling" is true if [and only if] the kettle is one of the items in the list of things which are boiling.
    The last strikes me as most closely resembling what Tarski does.
    Banno

    I don't know why you regard it as the most close. All three seem reasonable to me. Though the first is Tarski's own form.

    The advantage of Tarki's form is that is is general. It applies to all sentences.

    'P' is true if and only if P.

    Then we plug we plug in any sentence for 'P'.
  • Logic of truth


    I don't know where you're headed with this, but in case my hunch is right, I would say:

    Tarski is not saying how we know that 'snow is white' is true. He's only saying what it is for 'snow is white' to be true. The latter may help for the former. But the definition itself is only of the latter.

    I unpacked 'snow is white' with the longer phrases. That works okay, because the context is extensional, not intensional. If we go to an intensional context:

    Bob knows that ('snow is white' is true if and only if precipitation in the form of small white ice crystals formed directly from the water vapor of the air at a temperature of less than 32°F has the achromatic object color of greatest lightness characteristically perceived to belong to objects that reflect diffusely nearly all incident energy throughout the visible spectrum)

    then of course, that could be false.

    The motivation for the unpacking was just to show that a careless reading of Tarski's formulation as being vacuous for being tautological would be not only prima facie incorrect but illustrated as incorrect.

    Tarski's definitIon itself:

    For any sentence 'P':

    'P' is true if and only if P.

    An instance:

    Let 'P' be 'snow is white'.

    'snow is white' is true if and only if snow is white.
  • Logic of truth


    They have the same denotation and extension (but not the same intension).

    There's perhaps a slight problem with the choice of 'snow' for the Tarski example.

    'snow' in the sentence is a noun, not an adjective.

    But 'snow' is a mass noun, so it's not as easy to work with here.

    Better might have been:

    The snow on the lawn is white.

    Or maybe 'cueball':

    'The cueball on the table is white' is true if and only if the cueball on the table is white.

    /

    is it really the case that the former is the denotation of the latter?Banno

    No.

    the phrase 'precipitation in the form of small white ice crystals formed directly from the water vapor of the air at a temperature of less than 32°F (0°C)' does not denote the word 'snow'

    and

    the word 'snow' does not denote the phrase 'precipitation in the form of small white ice crystals formed directly from the water vapor of the air at a temperature of less than 32°F (0°C)'.

    Or do they just happen to denote the very same things, the denotation being those very things?Banno

    They denote the same thing.

    we don't want it to be the. case that one doesn't know what snow is until one knows it is precipitation in the form of small white ice crystals formed directly from the water vapour of the air at a temperature of less than (0°C).Banno

    That's a separate epistemic question. But I don't see how it's a problem for Tarski's definition or my remarks about it.
  • Logic of truth


    Indeed, the second is a formal way of saying the first.

    But necessity and sufficiency (the biconditional) does not enter there, in the semantics, but rather in the definitions, which are syntactical.

    (Note that Tarski's definition of 'is true' is also in canonical biconditional form.)
  • Logic of truth
    For uniformity of style we could say 'relation symbol' rather than 'predicate symbol'.

    Then have:

    The model maps n-place (n any natural number) relation symbols of the language to n-place relations on the domain, and maps n-place (n any natural number) function symbols to n-place functions on the domain.

    I think we could say that the extension of a relation or function symbol is the relation or function the symbol maps to.
  • Logic of truth


    I just now added:

    I think we could say that the extension of a predicate or function symbol is the relation or function the symbol maps to. (?)
  • Logic of truth


    The denotation of a word is the thing the word refers to. In formal semantics, the model maps n-place (n any natural number) predicate symbols of the language to n-place relations on the domain, and maps n-place (n any natural number) function symbols to n-place functions on the domain.

    That is semantical.

    I think we could say that the extension of a predicate or function symbol is the relation or function the symbol maps to. (?)

    /

    Where biconditionals (necessity and sufficiency) enter are in definitions:

    Definitional Axiom Schema - predicate symbol:
    Px1...xn <-> Q
    where P is a new n-place predicate symbol; x1,..., xn are distinct variables; and Q is a formula (of the language of the source theory) in which P does not occur and in which the only free variables are among x1,..., xn.
    (If n = 0, then P is just a propositional symbol and there are no free variables in Q.)

    Definitional Axiom Schema - function symbol:
    fx1...xn = y <-> Q
    where f is a new n-place function symbol; and x1,..., xn, y are distinct variables; and Q is a formula (of the language of the source theory) in which f does not occur and in which the only free variables are among x1,..., xn, y; and all closures of E!yQ are theorems of the source theory.
    (If n = 0, then f is just a 0-place function symbol and there are no free variables in Q other than y.)

    Those are syntactical.

    /

    The extension of a property is the set of all things that have the property.

    That is philosophical.
  • Logic of truth
    where exactly is "snow" denoted as snow and "white" denoted as whiteRussellA

    'snow' is not denoted as snow, and 'white' is not denoted as white.

    'snow' denotes snow, and 'white' denotes white.
  • Logic of truth
    waiting to be discoveredRussellA

    Denotations are stipulated. Though it is not as clear cut in natural languages as with semantics for formal languages.

    However, if given fire is hot as the expression on the right hand side, this means that the denotation of "x" as fire and the denotation of "y" as hot are already within the expression fire is hot, waiting to be unpacked.

    If that is the case, then what are "x" and "y" ?
    RussellA

    Do you mean the denotation of 'fire' is x and the denotation of 'hot' is y?

    With 'snow' and 'white' I just looked in a dictionary.
  • The Largest Number We Will Ever Need


    What, no leminscate to go with that?
  • The Largest Number We Will Ever Need


    Just to let you know that I haven't disregarded your post. I wish to give it more thought. I hope eventually to reply.
  • The Largest Number We Will Ever Need


    To say that I have other pursuits, closer to my heart, that I sometimes neglect for posting, does not at all entail that I think that there are not posters worth reading. I could even say that the ghost of Kurt Godel himself visits me each night and wants to give me free lessons, but I can't take him up on it, because mathematics is far from my main pursuit. That wouldn't entail that Kurt Godel is not worthy of me!TonesInDeepFreeze

    Too bad I don't have an emoticon to express that for you.
  • The Largest Number We Will Ever Need
    Forumcombing is itself a distraction that I probably shouldn't allow myself as it eats so terribly into my time needed for my main pursuits.
    — TonesInDeepFreeze

    Of course. We are not worthy of you.
    apokrisis

    You did it again! You falsely twisted what I said to reflect it in the worst possible way, little doubt as a spite you're exercising. You are incorrigible.

    To say that I have other pursuits, closer to my heart, that I sometimes neglect for posting, does not at all entail that I think that there are not posters worth reading. I could even say that the ghost of Kurt Godel himself visits me each night and wants to give me free lessons, but I can't take him up on it, because mathematics is far from my main pursuit. That wouldn't entail that Kurt Godel is not worthy of me! Get a grip, man.

    lacking a prime characteristic of the true crankapokrisis

    He's a variation.

    And yet you only hammer harder when that someone finds you being overly hostile and wants to laugh you off?apokrisis

    I have recently.

    Your annoyance with me should not permit you to read into my plain words things that are not in them, not even plausibly, not to willfully misconstrue what I say in the worst way, and not to strawman me over and over as you did yesterday. That is beneath you.
    — TonesInDeepFreeze

    You wildly exaggerate.
    apokrisis

    Not this time.

TonesInDeepFreeze

Start FollowingSend a Message