Causality (also referred to as causation, or cause and effect) is influence by which one event, process, state, or object (a cause) contributes to the production of another event, process, state, or object (an effect) where the cause is partly responsible for the effect, and the effect is partly dependent on the cause. In general, a process has many causes, which are also said to be causal factors for it, and all lie in its past. An effect can in turn be a cause of, or causal factor for, many other effects, which all lie in its future. Some writers have held that causality is metaphysically prior to notions of time and space. — Wikipedia
Everyday objects do not actually touch each other; rather, contact forces are the result of the interactions of the electrons at or near the surfaces of the objects. The atoms in the two surfaces cannot penetrate one another without a large investment of energy because there is no low energy state for which the electron wavefunctions from the two surfaces overlap; thus no microscopic force is needed to prevent this penetration. On the more macroscopic level, such surfaces can be treated as a single object, and two bodies do not penetrate each other due to the stability of matter, — Wikipedia
The physics behind billiards (or the physics behind pool), in large part, involves collisions between billiard balls. When two billiard balls collide the collision is nearly elastic. An elastic collision is one in which the kinetic energy of the system is conserved before and after impact. Therefore, for simplicity one can assume that for collisions involving billiard balls, the collision is perfectly elastic.
For collisions between balls, momentum is always conserved (just like in any other collision). For a simplified case assuming no friction …we can combine this fact with the elastic-collision assumption to find the trajectory of two colliding billiard balls after impact. — Real World Physics Problems
Again - For this thread I’d like to focus just on the meaning of the words “cause” or “causalty,” not on any other philosophical issues. Also, as I noted, I’d like the focus to be on physical causes. — T Clark
This seems more of a focus on the physics question of what causation is as opposed to the philosophical issues related to causation. — Hanover
Statistically speaking, the best you can say is that A is 100% correlated to B after n number of trials, but you can't ever say that A causes B. — Hanover
In general, a process has many causes, which are also said to be causal factors for it, and all lie in its past. An effect can in turn be a cause of, or causal factor for, many other effects, which all lie in its future. Some writers have held that causality is metaphysically prior to notions of time and space. — T Clark
I think currently in physics they haven't put up a narrative as to what's a necessary component of cause and what's sufficient (such as quantum spin etc). It seems they're still trying to find more particles and trying to order them. I know string theory fell out of favor but quantum field theory has an argument for accounting for cause in quantum mechanics and general relativity (which both supplanted classical mechanics in manners of their own). In classical mechanics I believe kinetic energy was what caused things. — Shwah
Events we call causes may not lead to events we call results 100% of the time. Being bitten by an infected deer tick causes Lyme disease, but not everyone who is bitten by an infected deer tick gets Lyme disease. — T Clark
Causes always lead to events if we accept that every event has a cause, which is a basic metaphysical assumption. What you have identified isn't a metaphysical problem, but an epistemological one, meaning every cause doesn't have a predictable event, and by "predictable," I mean knowable. That we don't know whether you will contract Lyme's disease by the bite of an infected deer tick doesn't mean that there will not be an event that is caused by the bite of the infected deer tick, it just means you don't know what it will be. — Hanover
So an identity is set, as well as its scale. We might consider the cue ball, but ignore the subatomic level. Time is one of those identities that we can consider, but we set a scale for this as well.
Do we want to consider seconds? Nano-seconds? Months, years? The scale and identities we pick for our consideration all need to be considered. — Philosophim
'cause' is one of those words so beloved of apologists and their cosmological arguments. — Tom Storm
Is cause something more like a necessary relationship? — Tom Storm
So, when the two balls hit each other, by which we mean the electrons in the atoms near the surface of the balls repel each other, the collision is elastic. That means the force of the collision causes both balls to deform like springs. When they move back into their original positions, a force is exerted and energy is transferred from one ball to the other and the second ball starts to move. — T Clark
As I understand it evolution was never about cause, it's about natural selection. — Tom Storm
Causes always lead to events if we accept that every event has a cause, which is a basic metaphysical assumption. What you have identified isn't a metaphysical problem, but an epistemological one, meaning every cause doesn't have a predictable event, and by "predictable," I mean knowable. That we don't know whether you will contract Lyme's disease by the bite of an infected deer tick doesn't mean that there will not be an event that is caused by the bite of the infected deer tick, it just means you don't know what it will be. — Hanover
We thus arrive at counterfactual theories of causation, — Banno
A second try might be to soften "A causes B" from B always following A to B mostly following A; to treat causation as probable rather than certain. — Banno
The alternative, for which I have great sympathy, is that the notion of cause cannot be cashed out in any great depth, to follow Hume in concluding that cause is more habit than physics. — Banno
Try looking up "cause" in the index of a text in any science. If it were central to the scientific enterprise. one would expect more than one or two entries. — Banno
Perhaps the breadth of the issue will become apparent as the discussion proceeds. — Banno
I'd suggest that the apparent way to cash out the notion that A caused B, where A and B are considered to be two distinct events, is something like that in each and every case in which A occurs, B follows. Implicit in this are modal considerations, the is, necessarily, A causes B if and only if every event A is followed by event B. We thus arrive at counterfactual theories of causation, which, despite having all the apparatus of possible world semantics at hand, fail to produce a coherent account. — Banno
A second try might be to soften "A causes B" from B always following A to B mostly following A; to treat causation as probable rather than certain. Hence the present preoccupation with causal models, which I am forced to admit show great promise in both their usefulness in practical application and to some extent their correspondence to our mundane notions of cause. — Banno
The alternative, for which I have great sympathy, is that the notion of cause cannot be cashed out in any great depth, to follow Hume in concluding that cause is more habit than physics. — Banno
A few things to note. Firstly, by taking the example of billiard balls, and especially the description of electron repulsion, as epitomising cause, we run the risk of falling into the common philosophical trap of reaching a wrong conclusion by limiting the examples we are considering. — Banno
And secondly, it is well worth noting that scientists, especially physicists, rarely if ever make use of the word "cause". — Banno
Get involved in philosophical discussions about knowledge, truth, language, consciousness, science, politics, religion, logic and mathematics, art, history, and lots more. No ads, no clutter, and very little agreement — just fascinating conversations.