To start, would you not say that an assumption is a species of proposition? — tim wood
No I don't think that this is the case, because a proposition is a type of statement, and one can hold an assumption without stating it. But I don't think this distinction is relevant anyway.
Or perhaps I'm confused: "which claims something about being." What claim can there be about being that is not actually a claim about something else? That is, being, being the supremum genus, has no species and no accidents. How can you predicate anything of being? — tim wood
Yes, this is the difficult thing. We do make claims about such general things, universals. What does it mean to be a human being, to be an animal, to be alive, etc.. Notice that I phrased it as "what does it mean", There are many such examples, what does "colour" mean, what does "number" mean. When we make a statement which claims something about these ideas, we are generally trying to clarify the meaning of the term. Do you agree that this type of expression, clarifying the meaning of terms, is distinct from predication? These claims which we have, hold, or make, about the meaning of the terms, are what I call assumptions.
So if someone makes a claim about "being" this is an expression of what that person believes is the meaning of the term. Maybe it could be called defining the term. If you look, you'll notice that such definitions are generally assumptions. For example, let me take something very simple, like numbers, and start with the numeral "one". That word refers to a unity, an individual. Next we have "two". Two refers to one individual together with another, making an artificial unity of "two". Notice that I distinguished the unity which is referred to by "one", from the unity which is referred to by "two", by calling the latter "artificial" (whether or not this term is adequate is not the point). It is necessary to do this because the use of "unity" which refers to one is distinct from the use of "unity" which refers to two. These are two completely distinct types of unity. "Two" implies that the unity referred to as two, is already intrinsically divided into two, whereas "one" implies divisibility (of infinite possibility), with no such division having been made already. So the unity referred to by "two" is a false unity because it is of necessity already divided. In the use of "two", we must recognize a sort of contradiction, a unity, one thing referred to with "two", which already has a defined division into two equal parts, so it is not really a unity. Whereas "one" represents a unity without any such division. Therefore the "unity" of one is distinct from the "unity" of two, three, four, etc.., and we cannot say that "two" refers to a unit in the same way that we say "one" refers to a unit without equivocation. These are some of my "assumptions" concerning numbers.
I take it this your ontological principal. But in what sense is it just an assumption - and not an induction? — tim wood
This is a good question as well, and I'll tell you what I assume is the answer to it. The problem is that we do not have access to see, touch, or in any way sense the vast majority of things in existence. Therefore we do not have the capacity to make proper inductive conclusions concerning "all things". (Incidentally this is the biggest problem with what I consider the best arguments for God, formulations of the cosmological argument. They start from principles which appear to be inductive principles, but are really not drawn from sound induction, and so are dismissed by atheists as faulty assumptions). This is why ontological principles are better characterized as assumptions rather than inductive conclusions. If we start allowing that these are proper inductive conclusions, it sets a bad example.
Instead, ontological assumptions are drawn from examining all sorts of evidence, and drawing conclusions from who knows what sort of logic, mixed in with different intentions and pragmatic concerns. So it's better to call them assumptions than inductive conclusions.
If you're suggesting - arguing - that predication attributes to a subject, and neither subject nor attribution "touch" the object, then the ultimate predication, being, is also similarly ungrounded. If you deny induction and call it all assumption, then you rule out reason-as-process. For what indeed can you reason about but predication? (The reasoning itself - if you allow for such - being mainly governed by logic.) — tim wood
I don't agree with this. It may be the case that predication is required for deductive reasoning, but there are other forms of reasoning as well. Induction for example, though it often involves predication, does not require it. But, as mentioned it is difficult to draw a line between good induction and faulty induction. We can apply induction, for example, to different activities, deciding whether certain activities are successful for achieving desired ends. The process of trial and error allows us to focus in on the successful activity, and when it is found that a certain activity consistently produces the desired result, we might produce an inductive conclusion concerning cause and effect. The process of determining the correct activity is not a matter of predication, though it is a matter of reasoning.
Nope. You just ruled this out. More accurately, on your approach, is that we recognize samenesses in the predications. Which is exactly what you say just above. . — tim wood
You must have misunderstood what I said. The "sameness" recognized through predication is a false sameness. It is the "sameness" which is found within inductive reasoning (which is really similarity), and is not the "sameness" expressed by the law of identity. That's the problem, Kornelius switched the "sameness" of the law of identity (often called numerical identity), for the "sameness" of inductive reasoning (often called qualitative identity, which is really a similarity), so that the formulation of the law of identity expressed by Kornelius was based in an equivocation of the word "same".
Even on your approach, no. On your approach, you don't have access to an object, so comments about an assumption about an object is an assumption on and about an assumption. You've left yourself no back door to the object. — tim wood
I don't see the basis for this claim, I think it's drawn from a misunderstanding of what I said.
Reading the rest of your post, I see we "assume" the subject into real existence, real objective reality, — tim wood
No, it's the object we assume into existence. The subject has real presence to us, within our minds, but the object is what is assumed. That's why there is such a thing as radical skepticism concerning the sensible world.
Sure, in your Aristotelian sense. — tim wood
We're discussing the law of identity, and this was expressed by Aristotle, and the proper expression of it is maintained as the Aristotelian expression even today. So if we are to understand "the law of identity" we need to understand the Aristotelian principles behind that law. But if your intent is to replace that law with something else, then we ought not call it "the law of identity", because of the risk of creating ambiguity and equivocation.
You above state "that a thing is the same as itself." You call that a law. Is this true of only some things and not others? Or is it instead true of every thing? If it is true of every thing, then it is true for all things. And you can complete this. So how, exactly, do you disqualify your ontological law of identity from being a law of logic? — tim wood
Let me explain the difference. We can define "thing" as "that which is the same as itself", or we can look at different individual things and make the inductive conclusion that all things are the same as themselves. The latter, as explained above, is a faulty inductive conclusion because it is very likely that the vast majority of individual things are hidden from our senses. So, the law of identity, which defines what a "thing" is, is not supported by inductive logic, it's more of a stipulation. Therefore it is not a logical principle, i.e. it is not a logical conclusion. I will not deny that it is supported by some sort of reasons, and some sort of "necessity", but it is more of a necessity in the sense of "needed for" the purpose of understanding, and not in the sense of a necessary conclusion, which requires some sort of understanding as a prerequisite for logical process.
Now, under Aristotelian logic, the assumption is that every category has at least one member. So that on the square of opposition, A implies I. That is, given all, you extract some, at least one - it is all at least existentially qualified. Kornelius, however, informs us that these days existential qualification means at least one, whereas universal qualification does not mean at least one. It means all without affirming that there are any. Which is interesting. I take him as correct in what he says.
In sum, it appears your argument has about it a dog-in-the-manger quality. You claim a "law" as your own (in ontology), which is very clearly a closed circle of argument, and at the same time deny it outside that circle. But the grounds for that denial are as confined as the denial itself. And it seems pretty clear that whatever you claim for, is based in what you claim. Tough circle to get out of, not to be escaped by mere assertion. — tim wood
Again, I do not understand the relevance of this.
can barely handle long posts. If you reply to this, perhaps consider just setting out succinctly your argument against the law of identity being a law of logic. I will grant you have done this in Aristotelian terms - a different argument. But now do it in terms of logic. — tim wood
How would this be possible? To discuss the law of identity in terms of logic would be to reformulate it into logical terms, which would destroy its essence, as Kornelius did.