So are there rational norms or aren't there? What does it mean to "correctly understand a stipulated object"? One minute you're all about sublanguages and quantification requiring formal contexts, and the next minute you are strongly implying that there is some reason to reject some sublanguages and accept others. I suggest ironing that out. — Leontiskos
I'm saying that one can understand a language without being committed to whether it is a "correct language", and be able to say whether a given statement in it is correct or incorrect. Because the norms of the sublanguage are fixed. Like all the statements in propositional logic are bivalent, the LEM holds etc.
Where this breaks down is the intuition that propositional logic "ought" apply to all meaningful sentences. Hence the Liar and indeterminate truth values now serving as "counterexamples" in this context. They can be understood as counterexamples when one expects propositional logic to work for all meaningful sentences. This was analogised with our circle discussion.
We were talking about circles as a concept, and they have associated formalisms, we've now seen that there are different formalisms for it in different contexts, and sometimes they disagree. How can you insist that one is more correct than another? Which one is baked in the metaphysics? I don't really need you to know the final answer on it, I just want to know how you'd go about deciding it even in principle.
I've had plenty of university math. You strike me as someone who is so sunk in axiomatic stipulations that you can no longer tell left from right, and when you realize that you've left yourself no rational recourse, you resort to mockery in lieu of argument. — Leontiskos
Alright. It just surprises me that you survived all of these different things to do with maths concepts with a strong intuition remaining that there's ultimately one right way of doing things in maths and in logic, and that understanding is baked right into the true metaphysics of the world. And also seem to align this understanding with Aristotle?
Maybe "propositional logic" is as slippery as "circle." — Leontiskos
Neither of them is particularly slippery. The slippery thing is a pretheoretical conception of logic, or circles, which might be better exemplified in some ways by some theories and in other ways by others. There's wide agreement on what the theorems are in propositional logic, how it's used etc. I don't believe it makes sense to say something is
slippery when the norms of its use are so well enshrined that it's taught to people the world over.
Neither of us disagree on what Euclidean, taxicab or great circles are at this point, I think. So they're not "slippery", their norms of use are well understood. The thing which is not understood is how they relate to the, well I suppose
your, intuition of a circle. I seem to have a spectrum of intuitions about circles that apply in different contexts. Maybe you don't?
I am getting the impression that you have quite an all or nothing perspective on this - either there is a single unified objective system or there is a sea of unrestrained relativism and mere subjectivity over what theorems are provable in what circumstances. I would suggest that people can agree on what theorems are provable in what circumstances without an opinion about whether they're the "right" theorems. It seems to be knowing what theorems something should satisfy and having the right formalism to prove them are inextricably related in mathematical creativity and reasoning - eg:
If I had the theorems I should find the proofs easily enough. — Riemann
Which brings us onto understanding a stipulated object.
What does it mean to "correctly understand a stipulated object"? — Leontiskos
I would say that someone correctly understands a mathematical object when they can tell you roughly what theorems it should satisfy, give some examples of it, and has ideas about proof sketches for theorems about it. That means they know how it behaves and what contexts it dwells in. They know how it ought to be written down and how to write it. They know how what they imagine is captured by how they write it down, and that what's written down captures all it should capture about the object.
That's also quite contextually demarcated - eg I would say I understand differentiable bijections in terms of real analysis objects but my understanding of their role in differential geometry is much much worse, despite their major role in the latter context.
There's a bit of graph theory I work on in my spare time, regarding random fields on graphs with an associated collection of quotient graphs, and I have an idea of what I want that contraption to do, but I've yet to find a good formalism for it. Every time I've come up with one it ends up either proving something which is insane, and I reject it, or I realise that the formalism doesn't have enough in it to prove what I need to. Occasionally I've had the misfortunate of making assumptions so silly I can prove a contradiction, then have to go back to almost square one. I wouldn't say I understand the object well yet, nor what theorems it needs to satisfy, but I have a series of mental images and operations which I'm trying to be able to capture with a formalism. I would call this object "slippery", but that's because I haven't put it in a cage of the right shape yet. Because I don't have the words or the insight yet. Perhaps I never will!
Terence Tao has a blogpost on stages of mathematical comprehension in a domain of competence, if you're interested I can dig it up.
I also don't want to say that all objects are "merely" stipulated, like a differential equation has a physical interpretation, so some objects seem to have a privileged flavour of relation to how things are, even if there's no unique way of writing that down and generating predictions. I had an old thread on that, which was not engaged with due to poor writing and technical detail, called "
Quantitative Skepticism and Mixtures". It's just a recipe for making largely useless models that produce the same predictions as useful ones, but have pathological properties. And the empirics aren't going to distinguish them if you choose the numbers right.
A final comment I have is that we should probably talk about the development of formalism also changing what counts as a pretheoretical intuition - cf the way of reading general relativity that undermines Kant's transcendental aesthetic, since noneuclidean geometries aren't just intelligible, they're baked into the reality of things. Also people who overdose on topology come out changed.