Continua are Impossible To Define Mathematically? Well, software, being of a modern generation of mathematicians, has opened my eyes again:
Wiki:"Other mathematical systems exist which include infinitesimals, including non-standard analysis and the surreal numbers. Smooth infinitesimal analysis is like non-standard analysis in that (1) it is meant to serve as a foundation for analysis, and (2) the infinitesimal quantities do not have concrete sizes (as opposed to the surreals, in which a typical infinitesimal is 1/ω, where ω is a von Neumann ordinal). However, smooth infinitesimal analysis differs from non-standard analysis in its use of nonclassical logic, and in lacking the transfer principle. Some theorems of standard and non-standard analysis are false in smooth infinitesimal analysis, including the intermediate value theorem and the Banach–Tarski paradox. Statements in non-standard analysis can be translated into statements about limits, but the same is not always true in smooth infinitesimal analysis.
Intuitively, smooth infinitesimal analysis can be interpreted as describing a world in which lines are made out of infinitesimally small segments, not out of points. These segments can be thought of as being long enough to have a definite direction, but not long enough to be curved. The construction of discontinuous functions fails because a function is identified with a curve, and the curve cannot be constructed pointwise. We can imagine the intermediate value theorem's failure as resulting from the ability of an infinitesimal segment to straddle a line. Similarly, the Banach–Tarski paradox fails because a volume cannot be taken apart into points."
It IS possible to learn something on this forum! Thanks.