I am glad I was of service! However, although it did clear things up a bit, I still am not fully agreeing with it nor do I think it is a clear distinction. — Bob Ross
Perfectly fine! For me it gave me a new avenue and way of describing what I've been thinking. Lets see if I can clear up your further issues.
Firstly, I am not finding it self-apparent that your definitions of "distinctive knowledge" and "applicable knowledge" are mutually exclusive — Bob Ross
Recall that what entails knowledge is a deduction that is not contradicted by reality. But now, I think with my further realization of the difference, I can finally remove "reality". Knowledge ultimately is a deduction. A deduction is a conclusion which necessarily follows from its premises. Adding, "reality" is redundant. Any legitimate contradiction to a deduction, means its not a deduction any longer. "Reality" was a place holder for basically, "legitimate challenges to deductions". If a deduction can hold despite other challenges to it, it is knowledge.
Knowing that this runs through both applicable and deductive, I've always noted there was a fine dividing line that we craft. The front and back of a piece of grass are different and necessary existences, but it can be difficult to tell the difference between the two without a zero point. A zero point is the origin of an X and Y graph. When you are looking at a line pattern, putting it to the zero point can give clarity on comparing its symmetry and slopes. What we're doing with definitive and applicable knowledge is putting knowledge on a zero point, and noting the X and Y dimensions. It is in essence a drawn line or parabola, but charted in a graph in such a way as to break it down into an easier calculation.
Honestly, my realization that applicable knowledge is simply the actual result of an induction makes me want to rewrite the entire thing. I believe I can make it so much clearer now. You see, you can have deductions without inductions. You can have inductions without deductions. X and Y. But you can only get certain outcomes when you combine the two. And when you combine the two, that result cannot be obtained without both an induction, and a deduction. 2,3 as a mark on a grid requires both to be. That point exists without a graph of course, but put it on a graph and you can make a breakdown far more useful.
But I go on. The entire point of the example is to agree with you, that sometimes certain knowledge outcomes are going to bleed into each other without clear definitions. The coordinate 2, 3 are clearly X and Y coordinates, but their existence as a combined coordinate is impossible without each other together. Remember that we can discretely experience whatever we want. We can throw away the grid if we want. But what would we lose if we do? Lets examine your points.
Imagine I am contemplating the square root of 25. Let's say I immediately (without performing the math) assert that it is 6 (because I memorized the square roots of certain numbers previously and, albeit incorrect, associated my memory of one particular square root problem as being answered by 6 with it being the square root of 25). — Bob Ross
What you are missing here is another ingredient we have not spoken about very much, but is important. Social context as mentioned in part 3. I realized I needed to point it out more last time we spoke. Implicitly, when I am talking about knowledge as a foundation in my head, I am referring to a person without any social context. I need to be pointing that out every time, and it is my fault for not doing so.
English and the symbols of logic of math, are not solo contexts. They are social contexts. You have an external reference to tell you that you are right or wrong. When you say you're making an induction that the square root of 25 is six, you're making an induction against societies definition of math, not your own. I can create my own math in my head where the square root of 25 is 6. Of course, my underlying essential property of what 25, 6, and all the words involved would need to be non-synonymous with societies. But within my personal context, I can make it whatever I want.
When you are learning 1+1=2, you are learning a societal definition of math. If you question, "What does 1+1 equal again?" you are asking for a definition that is not your own. You can learn math from other people. But when you are doing a math problem, and you cannot deduce the answer, you are making an induction about what societies rules would conclude the answer should be. Implicitly, you are unsure you have all the rules and process of thinking correct, and you need to check with others. In this way, once you find the answer, you have obtained applicable knowledge of the answer.
I feel in a self-contained context, the descriptors of distinctive and applicable are clear. It is when societal context enters in, that it can be potentially blurred. If someone tells you 1+1=2, and you clearly remember that, that would seem to be distinctive. If someone then asked you, "What does 1+1 equal"? you would distinctively know 1+1=2, but would you know that will be the accepted answer in this particular question? What separates an induction from a deduction is just a little uncertainty to that person's reaction to your answer.
Likewise, an induction that is verified via a deduction is not a "deduction which is not contradicted by reality": it an induction which is not contradicted by reality, but is distinguished from other inductions by the manner in which is confirmed (deduction). — Bob Ross
I want to word it more clearly from my end, though this may be semantics at this point. An induction, who's conclusion has been reached deductively, is applicable knowledge. As an example, I make an induction that the next coin flip will be heads. We could use the hierarchy to examine the cogency level of that induction. Whether it flips to heads or tails (or the ridiculous unlikelihood of landing on that knifes edge) we can examine the essential properties of the result, and deduce a conclusion.
That conclusion, no matter the result, is applicable knowledge. It doesn't mean we didn't make an induction. If for example I guessed heads, and it landed on heads, my induction did not itself become a deduction because I guessed correctly. It is only when the answer to that induction is deduced, that we have applicable knowledge. That knowledge may be, "I guessed heads, but it landed on tails". This differentiates itself from my distinctive knowledge, or definition of the essential properties of "landing on heads or tails" entails.
Finally, it is essential to note how the induction is concluded. Having an induction that happens to be correct is not the same as knowledge in any epistemological analysis I've ever read. And for good reason. A guess that happens to be right is not knowledge, its just a lucky guess. We can have knowledge that we made a guess, and we can have knowledge of the outcome of that guess, but that is it.
Furthermore, I think you are claiming that distinctive knowledge precedes (always) applicable knowledge, but in this case (depending on whether a belief is conjured) applicable knowledge could be obtained without using any prior distinctive knowledge (e.g. without asserting a preliminary belief, the deductive application of addition to 1 + 1 would produce distinctive knowledge, but with a preliminary belief it would have produced applicable knowledge without any preceding distinctive knowledge). — Bob Ross
I still believe distinctive knowledge always comes from applicable knowledge. If I experience something for which I have no distinctive knowledge, I first may try to match it to the dictionary in my brain. If I deduce that I cannot, I applicably know what I am seeing does not match what is in my brain. At that point, I create an identity for it. Its the sheep and goat example all over again. To avoid retyping it up again, do a ctrl-f 'goat' on section 2 to re-read the example.
To sum it up, we can use the deductions we arrive at from our inductions to amend or create new distinctive knowledge (solo context again). But distinctive knowledge is not an induction itself. It is the creation of an identity that can be used in a later induction or deduction. It can be amended, created, and destroyed. But the experience itself is created and thus known by us without any induction involved.
But abstract knowledge under your definitions would not be exclusively distinctive. — Bob Ross
Again, in a social context, you are somewhat correct. Because in this case, the abstract is something invented by society, something we do not have control over. It is the distinctive knowledge of society, and if we use inductions to say, "Do I understand societies distinctive knowledge correctly?" those deduced solutions are applicable knowledge. I also want to use "distinctive knowledge of society" with care. I think that's not quite clear, and I would very much consider this to be ambiguous and possibly confusing. I might need a new phrase here, which I believe I will think into more. This post is already massive enough as it is.
:)
the coining of a term in reference to an object in front of me would be a pure deduction (which pertains to something non-abstract) and, thusly, would be distinctive knowledge. Whereas my belief that some object that isn't in front of me is the same as the one that is would be merely an induction (that happens to be verified/unverified by means of a deduction), therefore applicable knowledge. — Bob Ross
A fantastic summary.
And, moreover, when I go verify that that other object is indeed like the other one that I previously saw (thereby using deduction), that would be distinctive knowledge in the sense that it is a pure deduction.
Let me clarify a little here. The result of a deduced conclusion from an induction would be applicable knowledge. Using a deduction is knowledge. It is the situation that we use the deduction in that determines the classification of knowledge we are receiving.
— Bob Ross
And my consideration of that object, grounded in a pure deduction, being that of the same as the previous object would be a purely abstract consideration (i.e. I am comparing the properties of this object, gathered deductively, to the previous properties I deductively found of the other object--none of this is non-abstract). It is almost like a pure deduction is always distinctive, regardless to what it pertains, and applicable is really the attempt to verify inductions. — Bob Ross
I would clarify that the applicable is not the attempt to verify inductions, it is the deductive result of an induction. Again, a deduction is a deduction. It is about whether it follows an induction, or another deduction, that determines the classification of knowledge.
There is another implicit question you're likely asking as well. "Are inductions and deductions classifications of knowledge themselves?
We can have distinctive knowledge of our inductions and deductions of course. But what of the underlying logic itself of deduction vs induction? That is distinctive. We have created a set of rules and definitions that we use. We have applicable knowledge that both inductions and deductions can be used without contradiction. I can make the induction, "I believe I can use a deduction without contradiction", and applicably know this to be true after its resolution.
This is the part you might like Bob, as I believe you've been wanting some type of fundamental universal of "reason". This logic of induction and deduction is reached because we are able to think in terms of premises and conclusions. This is founded on an even simpler notion of "predictions" and "outcomes to predictions". Much like our capability to discretely experience, this is an innate capability of living creatures. I believe this coincides with your definition of "reason" earlier as "decisions with expectations".
Can we define this in a way that is undeniable, like discretely experiencing? If discretely experiencing is an act of "existence" perhaps "action" is the next act needed for an existence to sustain itself. I do not have it well thought out to the point where it is simple, incontrovertible, and self-evident, but an initial proposal is "the act of breathing". I cannot stop discretely experiencing no more than I can cease breathing entirely. From this autonomous action, comes the next evolution, agency; the act of intention with an expected outcome. This is evidenced by eating. A being cannot eat if if it has not intention and action on that intention.
With intention and expected outcome, and the evolution of imagination and the capability of language, we can arrive at inductive, and deductive thought processes. Premises can either lead to only one outcome, and premises can lead to more than one outcome. In a broad sense, the definitions of inductive and deductive cover these scenarios. The recognition and analysis of these is beneficial to a living being, because a being can figure out when there is higher and lower chances of their intentions arriving at a predicted outcome.. This allows the maximum type of agency afforded to a being, and the greater the agency of intention and outcomes, the more likely what one expects to happen, will come to pass.
So then, the knowledge of induction and deduction are formed distinctively in the solo context. Of course, if we use either of these in an induction, and deductively determine the outcome, then whatever is determined is applicable knowledge.
I admire your desire to keep it fundamentally easier to comprehend (and honestly that is your prerogative, I respect that), but I find your "will" incredibly ambiguous (I am gathering it might be purposely so?). For example, if "reality" is simply "what I do not control", then my body could very well not be apart of "reality". — Bob Ross
Perhaps it was how I explained it that made it ambiguous. Will is simply intention of action. That's all. If my intention of action is denied, than that is because of reality. Reality is an ever constant unknown which can deny my will at any time. Essentially reality is the potential my will can be denied. If I will my body to do something, and it does not happen, that is reality that I cannot deny. Whether reality denies me or not, is the outcome I await. I feel the current discussion on it is overcomplicating the issue for what we need at this time. If you want to flesh out will more, perhaps this should be saved for a later post. I don't think its necessary to discuss the current issues of applicable and distinctive knowledge, and I don't want the topic to lose that focus.
I agree that we can create abstract logic, but it follows from necessary logic. — Bob Ross
I don't know what "necessary logic" is. If you mean we have the innate capability to intend an outcome, no disagreements there. But that is not knowledge, that is action. Just like the ability to discretely experience is not knowledge either. I can distinctively know what I discretely experience, and I can distinctively know what I intend in my outcome. The creation of logic is distinctive, but if I use that logic in an induction, I must deductively conclude that outcome. That result of using that logic is applicable, and not distinctive.
I still think, so far, that the only clear distinction here would be reason and everything referred to by it (aboutness vs about). — Bob Ross
We have touched upon reason only in a few sentences. It has not undergone the same rigor as the rest of the arguments. I have tried to flesh it out here. Reason, as I initially understood it, doesn't seem to do any more than simply describe that we make actions with intention. I have hopefully broken down how this plays in with the analysis above, but as always, please put your input in and feel free to clarify or add to the initial meaning.
To even try to negate IF THEN in terms of its form, I would have to conditionally assume a hypothetical where I don't necessarily utilize IF THEN, which thereby solidifies its necessity. — Bob Ross
Its "necessity" is distinctively known. This is a deduction you have made without any other inductions involved.
Hopefully I've demonstrated that it isn't always tier 1, but application could be tier 1 as well. It really seems like you are distinguishing a deduction from an induction (that can only be verified by deduction--which would be thereby something verified distinctively). — Bob Ross
Application cannot be done prior to distinctive knowledge, because you must first make an induction. Do you distinctively know the induction you are making? Yes. Can you make a deduction without first distinctively knowing premises and rules? No. You can experience something, but experiencing something in itself is not applicable knowledge. Recall, you can experience a "sheep" for the first time, and that is your distinctive knowledge of the experience. If you later make an induction based off of that distinctive knowledge, "That over there is a sheep," the deduced outcome to that induction will be your applicable knowledge.
I can have inductions that do not pertain to objects (i.e. are abstract) which I can then thereafter determine whether they are true via abstract deduction. — Bob Ross
In a solo context, I do not believe it is possible to make an induction about abstract logic. You create the rules, so everything follows from your premises. You can create a logic that also does not have set outcomes. You distinctively know this, because you created it to be that way. For example, lets note that we conclude when a coin is flipped without knowledge of the force applied, it has a 50/50 chance of landing on either side. Barring all applicable knowledge where's the induction? The induction only happens if we predict a particular outcome by flipping an actual (non-abstract) penny. I can flip an abstract penny in my mind, but I determine the outcome don't I?
In claiming that we can have abstract inductions that we can then solve deductively, we have to be careful not to sneak in any applicable knowledge. Applicable knowledge is knowledge is the deduced result from an induction we don't have control over. We can create further distinctive knowledge from applicable knowledge, but that is a combination of abstract (distinctive) with non-abstract (applied).
Whew, major write up here from me. And yet still a lot I'm sure you want covered, such as societal context, and perhaps a further exploration into "will". To focus, I think it would be best if we finish the idea of distinctive and applicable in a solo context, and start bleeding that into societal context next. If you need a refresher on societal context, section 3 is where I went over it. Thanks again Bob, I look forward to your responses!