• Idealism and Materialism, what are the important consequences of both.
    In this particular case, there is no direction towards the answer. Rather, every direction is as good as any other.khaled

    I see no reason to agree with you. And I did read your statements. You stated a personal opinion; "there is no use in talking about 'the reason that orders the world'". And you made a further statement about your personal resignation; "I don't have access to 'the reason that orders the world' so I don't care about it."

    Nowhere have I seen the claim that a human being has no direct access to the independent ordering of the world justified. Plato argued that the philosopher does have access to it through the means of apprehending "the good". This is the point of the cave allegory. And, it is the described responsibility of the philosopher to turn around, and go back to the others to assist them in their enlightenment.

    So the statement, "no human being can have access to the reason that orders the world" is absolutely unsupported, as far as I can tell, yet the statement "it is possible for a human being to access the reason that orders the world" is flimsily supported. Flimsy support out weighs no support by an infinitely large magnitude, so I choose the flimsy support for my opinion; while your opinion ought to be banished from the philosophical mind as that held by those who are satisfied to be trapped in the cave of illusion for all eternity.

    And this is true of everyone. It's not about the limitations of the individual but the limitations of being human.khaled

    It appears like you do not believe in evolution then. If these limitations are truly the limitations of being human, as you believe, they are still not the limitations of being alive.
  • Idealism and Materialism, what are the important consequences of both.
    Only a fool would want to know something they know they can’t know.khaled

    Even if you know that you will never know the answer to a specific question, you can proceed in the direction toward finding the answer, and potentially help others, who are not so helpless as you, to find that answer. That the answer will not be found by you does not mean that it will not be found, so this ought not prevent you from working toward finding it. There's an interesting aspect of knowledge, it's cumulative, and not restricted by the limitations of the individual.
  • Can it be that some physicists believe in the actual infinite?
    You have stated both that we do and do not perceive (i.e. see) order with the senses. This is not a failing on my part.Luke

    It suddenly occurred to me today, why you are having so much trouble understanding. It's not so much the ambiguous use of "see" which is throwing you off, but I now see that you are not respecting the distinction between the two completely different referents for "order", which I thoroughly explained to you.

    In the case of "inherent order" the order is within the thing sensed. It is sensed (in the manner I described), but not apprehended by the mind due to the deficient capacity of the sensing being. I've also used "order" to refer to orders created by the mind, within the mind, sometimes intended to represent the inherent order, as a model does. This order is apprehended by the mind, being created within the mind, but it is in no way sensed, because it is created within the mind and is therefore not part of the thing sensed.

    You can see that in one context the referent of the word "order" is sensed but not apprehended by the mind, while in the other context the referent order is apprehended by the mind, but not sensed. Without adhering to the particulars of the context, and maintaining the differentiation between the two very distinct things referred to with the word "order", it would appear like "order" is used in a contradictory way; both sensed and not sensed, apprehended by the mind and not apprehended by the mind This is what you have been doing, taking my statements concerning "order" out of their context, failing to respect the described difference between the two distinct types of order, and claiming that I have contradicted myself
  • Can it be that some physicists believe in the actual infinite?

    This is an important point for you to recognize. It's not in the real world, (where truth and falsity is determined by correspondence), where the Pythagorean theorem is false, it's tried and tested in the real world, and very true. It's only in you imaginary world, of so-called pure abstraction, where the only test for truth is logical consistency, or coherency, that it appears to be false. All this indicates is that your imaginary world is not to be trusted, as it does not give us coherency between even the most simple mathematical principles. On the other hand the Pythagorean theorem alone, can be trusted, because it does give us the right angle. So the quest for logical consistency, or coherency, is not a quest for truth..
  • Can it be that some physicists believe in the actual infinite?
    It's not complicated; you contradicted yourself. I think you see that now, which is why you have given up.Luke

    So, your failure to recognize the distinct ways that I used "see", which I explained over and over again, constitutes contradiction on my part. OK, I must have contradicted myself then, according to the way that you use "contradicted", therefore I give up.
  • Idealism and Materialism, what are the important consequences of both.
    As such, I don't care about "the reason that orders the world". Maybe it is the same as the reason in my mind, or maybe the reason in my mind is just an "evolutionary shortcut", a hack, a parody of the real thing optimized for survival. Either way, I don't have access to "the reason that orders the world" so I don't care about it.khaled

    The philosophical mind has the desire to know. So such statements are very unphilosophical.

    That is the point that I was trying to make. I think it calls into question Kenosha Kid’s view that there is ‘one objective reality’ which all interpretations try to approximate or interpret. I agree that reality may be one, but that unity must necessarily transcend subject-object dualism, meaning that it’s out of scope for naturalism as such.Wayfarer

    What I find is the biggest problem with the materialist view is that it inevitably leads to determinism. The determinist perspective is "that there is 'one objective reality'", and this objective reality encompasses all of the past and future, in an eternalist sort of way.

    This perspective completely ignores the very real, important and significant, difference between past and future, which we know very well through our experience. Ignoring this difference, and the fact that the undetermined nature of the future gives us the capacity for freely willed actions, while the fixed nature of the past renders us helpless in any desire to change what has already occurred, presents us with a very skewed conception of "one objective reality". The difficulty in understanding "objective reality" is the need to know how the undetermined becomes determined at the moment of the present.
  • Can it be that some physicists believe in the actual infinite?
    Say, did you know that the Pythagorean theorem is false in the real world?fishfry

    No, you've got that wrong. The Pythagorean theorem is true in the real world, because it works well and has been proven. Where it is false is in your imaginary world. It works very well for me. I use it regularly. That you think my right angle is a wrong angle is a bit of a problem though. We know induction is not perfect, it just describes what is experienced or practised. (Am I spelling practise wrong?) That the Pythagorean theorem is false in your imaginary world which you call "abstraction", is just more evidence that what you call "abstraction" is not abstraction at all, but fiction.

    Do you think that we can see infrared and ultraviolet light just because it exists in the world?Luke

    Yes, I think the eyes most likely do sense infrared and ultraviolet in some way: https://www.sciencedaily.com/releases/2014/12/141201161116.htm

    I have not misunderstood.Luke

    Yes, you are very clearly misunderstanding, and I'm tired of trying to explain. You don't seem to have a mind which is inclined toward trying to understand complicated ontological problems, instead thinking that everything can be described simply by is or is not, because otherwise would be contradiction.
  • Can it be that some physicists believe in the actual infinite?
    No middle 'e' in judgment. I can't take anyone seriously who can't spell.fishfry

    What kind of petty bullshit is this? Fuck you fishfry, I thought we were trying to be civil with one another. I see you've gone off the deep end already, and it's only Monday.

    The point is that the process of abstraction necessarily, by its very nature, must omit many important aspects of the thing it's intended to model. You prefer not to engage with this point.fishfry

    I've engage with this point, explaining that I think it is wrong. If it's an important aspect, an essential feature, then if the abstraction processes "misses" it, the abstraction is wrong. If it is something which can be left out of the abstraction, it is in Aristotelian terms "accidental" or "an accident", and is not an important aspect. Abstraction separates the important from the unimportant, and if it omits important aspects it is faulty.

    That's fantastic. The Pythagorean theorem is a beautiful, gorgeous, striking, brilliant, dazzling, elegant, sumptuous, and opulent example of an abstraction that is not based on ANYTHING in the real world and that has NO INDUCTIVE CORRELATE WHATSOEVER. I am thrilled that you brought up such an example that so thoroughly refutes your own point.

    The Pythagorean theorem posits and contemplates a purely abstract, hypothetical, mathematical right triangle such that the sum of the squares on the legs is equal to the square on the hypotenuse. No such right triangle has ever, nor will ever, exist in the real world.
    fishfry

    That's amazingly wrong, to think that the Pythagorean theorem is not based in anything from the real world. It's based in the method used to produced parallel lines for marking out plots of land. Check into the history of "the right angle", and you will learn this. Clearly this is something in the real world.

    Your own example falsifies this. I can never confirm the Pythagorean theorem in by observation of the world. I can only prove it deductively and never inductively.fishfry

    Huh? Construction workers prove the Pythagorean theorem in the real world, many times every day. Make a 3,4,5 triangle, tt never fails to produce the desired angle. How is this not proof? Try it yourself. Mark two points to produce a line. Use the Pythagorean theorem to make a right angle at each of the two points, and make two new points on those right angles, at equal distances from the original points. Measure the distance between the two new points, and you will see that it is the same as the distance between the two original points, and you have proven the Pythagorean theorem because you have used it to produce right angles, and have proven that the angles produced are in fact right angles by producing two more equivalent angles.

    This is the complete opposite of induction.fishfry

    What you seem to not grasp, is that people were producing right angles long before the Pythagorean theorem was formalized. The Pythagorean theorem came into existence as a formalized description of what those people were doing. Therefore it is a generalization of what people were doing when they succeeded in producing the right angle, so it is an inductive conclusion. Try and see if you can apprehend pi as an inductive conclusion? It is a generalization, what all circles have in common, just like the Pythagorean theorem is a generalization, what all instances of "the right angle" have in common. If you produce an angle which is not consistent with what the Pythagorean theorem says, you have not produced the right angle.

    But getting back to the larger point: A map is a formalization of certain aspects of reality that necessarily falsifies many other things. Just as a set is a formalization of the idea of a collection, that necessarily leaves out many other things. I have a bag of groceries. I formalize it as a set. The set doesn't have order, the grocery bag does. The set doesn't have milk, eggs, bowling balls, and rutabagas, the grocery bag does.fishfry

    As explained above, if an abstraction, or formalization, leaves out important aspects, then it is faulty. And if you insist on using the map analogy after I've explained why it is unacceptable, I will insist that if a map leaves out important things, then it is obviously a faulty map.

    One reason why the map analogy is faulty, is because the map maker can decide, based on the purpose for which the map is being made, which aspects are important, and which are not. In the case of abstraction, formalizing, or generalizing, we have no choice but to adhere to the facts of reality, or else the formalizations will be incorrect.

    I think what you are saying is that an abstraction faithfully represents some aspects of the thing, and leaves out others.fishfry

    An abstraction is a generalization. It does not represent "the thing" in any way, nor does it represent aspects of the thing. It represents a multitude of things, by creating a category or type, by which we can classify things. Again, another reason why the map analogy is misleading. It appears to make you think that an abstraction represents a thing, like a map does. That is incorrect, the abstraction is a generalization, a universal, which represents a multitude of things.

    The essence of your argument is that "inherent order" is so tightly bound to the thing, that it can not be separated by an abstraction. I believe that's the core of our difference. Do I have that right?fishfry

    This is not really a good representation of my argument, because you don't seem to understand what abstraction is in anyway near to the way that I do. It's a good start anyway. But let me put it in another way. Let's suppose a category, or type called "thing". The abstraction, generalization, or formalization, would be a statement of definition, what it means to be a thing. This would be a statement as to what all things have in common, which makes it correct to call each of them a "thing". To be an acceptable definition, would be to be a good inductive conclusion. My argument is that the good inductive conclusion is that all things have inherent order therefore it would be a bad formalization, generalization, or abstraction, to posit a thing without inherent order because this is contrary to good inductive reasoning. Furthermore, I've argued that since such a principle, is not based in any inductive reasoning, it cannot truthfully be called an abstraction, generalization, or formalization, it is simply an imaginary fiction.

    For purposes of the conversation, yes, I'll stipulate that. So what? It's how mathematical abstraction works. Just like the Pythagorean theorem does the same thing.fishfry

    As I've explained, it is false to call this an abstraction. To make up a purely imaginary, fictitious principle, is not abstraction. And, the Pythagorean theorem is not at all like this. Creating the Pythagorean theorem was a matter of taking what people had been doing on the ground, producing the right angle and parallel lines, and using inductive reasoning to determine what all these cases of producing the right angle had in common. Therefore it is not a purely imaginary and fictitious principle, it is a truthful inductive statement about what all instances of the producing the right angle have in common.

    Well now you're just arguing about my semantics. If I don't use the word generalization (which by the way I have not -- please note); nor have I used the phrase inductive conclusion. I have not used those phrases, you are putting words in my mouth. I said mathematical models are formalized abstractions, or formal abstractions. Or formal representations. That's what they are. The need not and generally don't conform to the particulars of the thing they are intended to represent. Just as an idealized right triangle satisfies the Pythagorean theorem, and no actual triangle ever has or ever will. Oh what a great example, I wish I had thought of it. Thank you!fishfry

    Remember, you claimed a difference between a formalization, and an inductive conclusion. I did not accept such a difference, and asked you to validate this claim. You have not yet done so, but continue to speak as if your proposed distinction is a true distinction, while I have demonstrated that it is not. Therefore I suggest that you give up, as false, this claim to a difference.

    You say that like it's a bad thing! Ok, imaginary fiction then. But a useful one!fishfry

    Yes, fictions are useful. The principal use of these is to mislead and deceive. A secondary use is entertainment, but this requires consent to the fact that what is presented is fiction.

    So if you have a problem, it's your problem and not mine, and not math's.fishfry

    Of course, deception is a problem for the one being deceived, not the deceiver. Or maybe I'm just not entertained by your proposed entertainment. Again, still my problem, but perhaps you have made a poor presentation.

    Well a set isn't actually a collection. A set is an undefined term whose meaning is derived from the way it behaves under a given axiom system. And there is more than one axiom system. So set is a very fuzzy term. Of course sets are inspired by collections, but sets are not collections. Only in high school math are sets collections. In actual math, sets are no longer collections, and it's not clear what sets are. Many mathematicians have expressed the idea that sets are not a coherent idea. It would be great to have a more sophisticated discussion of this point. I'm not even disagreeing with you about this. Sets are very murky.fishfry

    It was you who called a set a collection, and referred to some sort of mystical process of collecting, which allows for your proposed "no inherent order".

    So therefore perhaps I should stop wasting my time trying to argue that math is inspired by reality, or that math is an abstraction of reality, and simply concede your point that it's utter fiction, and put the onus on you to deal with that. I could in fact argue the abstraction and inspired-by route, but you bog me down in semantics when I do that and it's tedious.fishfry

    I dealt with this. Most math is not fiction, as evident in the example of the Pythagorean theorem. I differentiated the types of mathematical principles which are imaginary fictions though, things like "no inherent order", and "infinity".
  • Can it be that some physicists believe in the actual infinite?
    If I see 100 bowling balls fall down, "bowling balls always fall down" is an inductive conclusion. But F = ma and the law of Newtonian gravity are mathematical models from which you can derive the fact that bowling balls fall down. It's a physical law, meaning that if you assume it, you can explain (within the limits of observational technology) the thing you observe.fishfry

    The law of gravity is the more general statement, saying all things with mass will fall down. The statement that bowling balls will fall down is more specific. Inductive reasoning is to produce a general statement from empirical observations of particular instances. So, the law of gravity as a general statement, is an inductive conclusion. And, bowling balls may or may not have been observed in producing that inductive law, but the law extends to cover things not observed, due to the nature of inductive reasoning, and the generality of what is produced. This is why inductive reasoning gives us predictive capacity. That mathematics is used to enhance the predictive capacity of inductive reasoning is not relevant to this point.

    But this is not an important point in the overall discussion.fishfry

    It is important, because induction, by its nature, requires observation of particular instances. And you seem to be arguing that there is a type of abstraction, pure abstraction, which does not require any inductive principles. So it is important that you understand exactly what induction is, and how it brings principles derived from observations of particular instances, into abstract formulae. Do you see that the Pythagorean theorem for example, as something produced from practice, is derived from induction?

    Ok. I don't think the definition of induction versus a formal model is super important here. But "bowling balls always fall down" is simply a generalization of an inductive observation, whereas the law of gravity lets you derive the fact that bowling balls fall down; and that in fact on the Moon, they'd weigh less. The latter is not evident from "bowling balls always fall down," but it is evident from the equation for gravitational force.fishfry

    It is the inductive conclusion, which allows for the derivation, the prediction, which you refer to. As it is a general statement, it can be applied to things not yet observed. It is not the mathematics which provides the capacity for prediction. mathematics enhances the capacity

    This point is not central to the main point, which is that models must necessarily omit key aspects of the thing being modeled.fishfry

    The central point is the difference between the inductive conclusion, which states something general, and the modeling of a "thing", which is a particular instance. At this point, we take the generalization, and apply it to the more specific. It must be determined how well the generalization is suited, or applicable to the situation. This requires a judgement of the thing, according to some criteria.

    Ok fine, then order is physical and the mathematical theory of order is an abstraction or model that necessarily misses many important real-world aspects of order yet still allows us to get some insight. That's the point of abstraction, which I already beat to death in my last post.fishfry

    I think your description of abstraction as missing things, is a bit off the mark. What abstraction must do is derive what is essential (what is true in all cases of the named type), dismissing what is accidental (what may or may not be true of the thing). Now, if order is essential to being a thing, then we cannot abstract the order out of the thing, to have a thing without order, because it would no longer be a thing.

    I'm explaining to you that whatever your concept of physical order is, mathematical order is an abstraction of it, which is necessarily a lie by virtue of being an abstraction or model, yet has value just as a map is not the territory yet lets us figure out how to get from here to there.fishfry

    This is not true in a number of ways. First, good abstractions, inductive conclusions, or generalizations, do not lie because they stipulate what is essential to the named type. They speak the truth because every instance of that named type will have the determined property.

    Second, your proposed "mathematical order" is not an abstraction, inductive conclusion, or generalization. You started with the principle that there is a unity of things with no inherent order. So you have separated yourself from all abstraction, induction, or generalization, to produce a purely imaginary, and fictitious starting point. You cannot claim that the imaginary, and purely fictitious starting point, of "no inherent order" is a generalization, or an inductive conclusion, or in any way an abstraction of the physical order. You are removing what is essential to "order", by claiming "no order", therefore you have no justification in claiming that this is an abstraction of physical order.

    Do you recognize the difference between abstracted and imaginary? Imagination has no stipulation for laws of intelligibility, while abstraction does.

    I've conceded your point, now that I understand what you mean by inherent order.fishfry

    OK, now lets proceed to look at your imaginary "mathematical order". Do you concede as well, that by removing the necessity of order from your "set", we can no longer look at the set as any type of real thing. Nor is it a generalization, an inductive conclusion, or an abstraction of physical order. It is purely a product of the imagination, "no order", and as such it has no relationship with any real physical order, no bearing, therefore no modeling purposefulness. It ought to be disposed, dismissed, so that we can start with a new premise, a proper inductive conclusion which describes the necessity of order.

    It's an abstraction that necessarily includes SOME aspects of the thing being modeled and excluces OTHER aspects. Just as a street map includes the orientation of the roads but ignores the traffic lights.fishfry

    The idea of something with "no inherent order" is not an abstraction, as explained above. It is a product of fantasy, imaginary fiction.

    That's right. A map is correct about some aspects of the world and incorrect about others. It's an abstraction.fishfry

    A map is not an abstraction, it is a representation. I see that we need to distinguish between abstraction, which involves the process of induction, producing generalizations, and as different, the art of applying these generalizations toward making representations, models, or maps. Do you see, and accept the difference between these two? We cannot conflate these because they are fundamentally different. The process of abstraction, induction, seeks what is similar in all sorts of different thing, for the sake of producing generalizations. The art of making models, or maps, involves naming the differences between particulars. These are very distinct activities, one looking at similarities, the other at differences, and for this reason abstraction cannot be described as map making.

    Maps are imaginary principles and don't formalize anything? Do you see why I think you're trolling?fishfry

    I was referring to the principles of "no inherent order", and "infinity", with the claim that these do not formalize anything. I wasn't talking about maps.

    If you would engage with my examples of maps and globes, I would find that helpful.fishfry

    The map analogy is not very useful, for the reason explained above, it doesn't properly account for the nature of inductive principles, abstraction. Generalizations may be employed in map making, but they are not necessarily created for the purpose of making maps. Now the map maker takes the generalizations for granted, and proceeds from there, but must choose one's principles. In making a map, what do you think is better, to start with a true inductive abstraction like "all things have order", or start with a fictitious imaginary principle like "there is something without order"? Wouldn't the latter be extremely counterproductive to the art of map making, because it assumes something which cannot be mapped?

    And sets represent aspects of collections, which exist in the world. And they omit "inherent order," which for sake of argument I'll agree collections in the world have.fishfry

    So, for the sake of argument, we can make the inductive conclusion, all collections which exist in the world have an inherent order. This is a valid abstraction, based in empirical observation, and it states that what is essential to, or what is a necessary property of, a collection, is that it has an inherent order. Do you agree then, that if we posit something without inherent order, this cannot be a collection? It doesn't have the essential property of a collection, i.e. order; therefore it is not a collection.

    Well that has nothing to do with anything. Maps don't show things that aren't there. The question is, how do you feel when a map omits things that ARE there, like wet lakes and rivers, cars, and the size and scale of the actual territory being modeled.fishfry

    Each map maker, based on the needs of that map maker's intentions, chooses what to include in the map. Abstraction, inductive reasoning, is very distinct from this, because we are forced by the necessities of the world to make generalizations which are consistent with everything. That's what makes them generalizations

    Then you don't see it.Luke

    Perhaps, but I disagree. It's a matter of opinion I suppose. You desire to put a restriction on the use of "see", such that we cannot be sensing things which we do not apprehend with the mind. I seem to apprehend a wider usage of "see" than you do, allowing that we sense things which are not apprehended. So in my mind, when one scans the horizon with the eyes, one "sees" all sorts of things which are not "forgotten" when the person looks away, because the person never acknowledged them in the first place, so they didn't even register in the memory to be forgotten, yet the person did see them.

    And you claimed earlier that we could not possibly see it, in principleLuke

    No, I think you misunderstood. Perhaps it was the use of "perceive" which is like "apprehend". I said we could not apprehend it with the mind, the mind being deficient. This does not mean that we cannot sense, or "see" it at all. But your limiting of "see", to only that which is apprehended by the mind, instead of allowing (what in my opinion is the reality of the situation) that we are sensing things which are not being apprehended by the mind, not "perceived", is making you think that just because we cannot apprehend it with the mind, therefore we are not sensing it at all.

    I know it's a difficult issue and it appears as incoherency, as ontological issues often do, because they are difficult to understand, but I think we need to establish a separation between what is sensed, and the apprehension of it, to account for the differences between how different people apprehend very similar sensations.
  • Can it be that some physicists believe in the actual infinite?
    Have you rejected your claim that we can see the inherent order?Luke

    No, I think we see it in exactly the way that I explained.

    2. How do you reconcile this with your statements that order is not visible?Luke

    I explained that. We see the object. The object exists as an instance of ordered parts, inherent order. Therefore we must be seeing the inherent order even though strictly speaking the order is not visible to the person who is seeing it. The "not visible" property is due to a deficiency in the capacity of the person who is seeing the order.

    I used the molecule example. Molecules are not visible to the naked eye. But we see the object, and the object is composed of molecules, therefore we must be seeing the molecules. That the molecules are not visible to the person seeing them is due to a deficiency in that person's capacities.

    It's the same principle as when someone is pointing something out to you, and you're looking right at it, so you're definitely seeing it, because it's right there in your field of vision, yet you don't see the particular thing that the person is pointing out. Have you ever looked at stars, and had someone try to point out specific constellations to you? You can be looking right at the stars, and see them all, therefore you are seeing the mentioned constellation, yet you still might not be able see that specific constellation.

    See the different senses of "see", and how "visible" might be determined based on the capacity of the observer, or the capacity of the thing to be observed? The inherent order is not visible to us, due to our deficient capacities, yet we do see it, because it exists as what we are seeing. Go figure.
  • A very expensive book.
    It is the content that is valuable,Sir2u



    So, who's the author?
  • Can it be that some physicists believe in the actual infinite?

    You didn't get the molecule analogy so I went back to the language one, I believe I used it earlier. Now you claim not to get the language one, but that appeared to me like an intentional misinterpretation. You pretended as if you didn't understand that apprehending language is understanding meaning.

    Each is an example of sensing something without apprehending what is being shown by the thing being sensed.

    You think it must be "hidden", if we sense something without understanding it, but I think that idea is what's misleading you. It's not at all hidden, the mind is just lacking in the capacity to understand what is being sensed. Thinking it is "hidden" is a feature of your accusative nature. When you can't understand a person you blame the other, instead of introspecting your own capacity. And if you cannot see what is right in front of you, you think it must be "hidden" from you, instead of considering the possibility that your eyes are actually sensing it, but your mind is just not apprehending it.,
  • Can it be that some physicists believe in the actual infinite?
    You said that we sense a foreign language without apprehending it.Luke

    To apprehend the language being spoken, is to understand the meaning. You work very hard to make understanding difficult for yourself.
  • A very expensive book.
    Metaphysics is much more valuable than that. It's priceless.
  • Can it be that some physicists believe in the actual infinite?
    Now you say that we neither sense nor perceive the meaning of a foreign language:Luke

    I don't see the problem. Do you not grasp a difference between hearing people talking, and apprehending the meaning? Meaning as analogous with order, was the example.

    Do you have an attention deficit or memory disorder? You seem incapable of maintaining your own position. A moment ago you were talking about "the reality of the situation" that we see the inherent order without apprehending it, and now you've switched back to saying that we can neither see nor apprehend the inherent order. If you think there are two different senses of the word "see" involved here, then define them both. Because one of them seems to refer to what we cannot see, which is not a familiar definition of the word "see".Luke

    You seem to be going through great effort to create problems where there are none. Oh well, it's what I've come to expect from you.
  • Can it be that some physicists believe in the actual infinite?
    Can you not hear foreign languages? This is a terrible analogy. This is something which we can perceive but cannot apprehend. Your analogy with molecules is equally bad, since it is something we can apprehend but cannot perceive. It is (or very recently was) your position that we can neither perceive nor apprehend the inherent order. Remember? You said that order is "not visible".Luke

    I don't think the analogies are bad. That there is order inherent within the thing seen is something inferred, just like that there is meaning in the foreign language which is heard, is something inferred, and that there are molecules in the object seen is something inferred. We neither perceive nor apprehend the inherent order but we infer that it is there, just like we infer that there is meaning in the foreign language, and that there are molecules within the thing seen. But we neither perceive nor apprehend the meaning in the foreign language, nor do we perceive or apprehend the actual molecules in the object seen. We apprehend a representation of the molecules, just like we apprehend a representation of the inherent order. And, when we come to understand the language we apprehend a representation of the meaning intended (what is meant) by the author.
  • Can it be that some physicists believe in the actual infinite?
    There's no contradiction here, I take it?Luke

    I assume there are many different senses to the word "see". The word is used sometimes to refer strictly to what is sensed, and other times to what is apprehended by the mind.

    So how can it be seen?Luke

    I really don't know how, it's just the reality of the situation. We sense things without apprehending what it is that is being sensed, as in my example of hearing a foreign language. There is a matter of distinguishing the individual elements, one from another, which the sense organ does not necessarily do, despite sensing the elements together as a composite.

    From your side it must seem like you're being tag-teamed by Luke and myself, but I'm not reading his posts. I'm not aware of that half of the conversation.fishfry

    Don't worry about that, the conversations are completely different. Luke is on a completely different plane.

    It's an abstraction intended to formalize an aspect of nature. If you think it's a generalization of something, you might be missing the point. Hard to say.fishfry

    I don't see the distinction you're trying to make here, between an inductive conclusion, and "an abstraction intended to formalize an aspect of nature". What do you mean by "formalize" other than to state an inductive conclusion.

    I see the majority of definitions as inductive conclusions. Either they are like the dictionary, giving us a formalization (inductive conclusion) of how the word is commonly used, or they are intended to say something inductive (state a formalization) about some aspect of nature.

    I think you are missing the point. If I drop a hundred bowling balls and I say, "Bowling balls fall down. That's a law of nature," then THAT is an inductive conclusion.

    But if you see 100 bowling balls fall down and you go, F = ma, that is an abstraction and a mathematical formalization. You don't seem to have a firm grasp on this. Do you follow my point here?
    fishfry

    I think it's you who is missing the point. I do not have a firm grasp on the distinction you are trying to make, because there are no principles, or evidence to back up your claim of a difference between these two.

    F=ma says something about a much broader array of things than just bowling balls. So one could not produce that generalization just from watching bowling balls, you'd have to have some information telling you that other things behave in a similar way to bowling balls. Mass is a property assigned to all things, and the statement "f=ma" indicates that a force is required to move mass. How can you not see this as an inductive conclusion? It's not just a principle dreamed up with no empirical evidence. In all cases where an object starts to move, a force is required to cause that motion. It might have been the case that "force" was a word created, thought up, or taken from some other context and handed that position, as being what is required to produce motion (acceleration), but this does not change the inductive nature of the statement.

    Your notion of induction is wrong. "All bowling balls fall down," is an inductive conclusion. F = ma is a formalization.fishfry

    As I said, I really do not understand how a "formalization" as used here, is anything other than an inductive conclusion. So I do not understand how you think my notion of induction is wrong. Perhaps you should look into what inductive reasoning is, and explain to me how you think a "formalization" is something different. I think induction is usually defined as the reasoning process whereby general principles are derived from our experiences of circumstances which are particular.

    But there are non-physical parts of the world that we are interested in, such as quantity, order, shape, symmetry, and so forth. Those are the non-physical parts of the world that are formalized by math.fishfry

    That such things are non-physical is what I dispute. How could there be a quantity which is not physical? "Quantity" implies an amount of something, and if that something were not physical it would be nothing. "Order" implies something which is ordered, and if there was no physical things which are ordered, there would be no order. And so on, for your other terms. It makes no sense to say that properties which only exist as properties of physical things are themselves non-physical.

    Things in the world have order, and we have a mathematical theory of order that seeks to formalize the idea.fishfry

    When you say "formalize" here, do you mean to express in a formal manner, to state in formal terms? If it is physical things in the world which have order, and mathematics seeks to express this order in a formal way, then how is this not making a generalization about the order which exists in the phyiscal world, i.e. making an inductive conclusion?

    On the other hand, of course there are non-physical, non-part-of-the-world abstractions too. Chess, for instance. Chess is a formal game, it's its own little world, it has a self-consistent set of rules that correspond to nothing at all in the real world. Knights don't "really" move that way. Right? Say you agree. How can anyone possibly disagree?fishfry

    How can I agree with this? Chess is a game of physical pieces, and a physical board, with rules as to how one may move those physical pieces, and the results of the movements. The physical board and pieces are not "nothing at all in the real world", they are all part of the world.

    What's with your motive here? Why do you insist on taking rules like those of mathematics, which clearly refer to parts of the real world, and remove them from that context, insisting that they do not refer to any part of the real world? Your analogy clearly does not work for you. The chess game is obviously a part of the world and so its rules refer to a part of the real world, just like quantity, order, shape, and symmetry are all parts of the real world, and so the rules (or formalities) of these also refer to parts of the real world.

    But you are the one that insists that physical collections of things have an inherent order. And that's what the mathematical concept of order is intended to formalize. Things in the world have order, and we have a mathematical theory of order that seeks to formalize the idea.

    Right? When mathematicians formalize numbers, they're abstracting and formalizing familiar counting and ordering. When they create abstract sets, they are formalizing the commonplace idea of collections. A bag of groceries becomes, in the formalization, a set of groceries. Surely you can see that. Why would you claim math is not based on everyday, common-sense notions of the world?
    fishfry

    Yes, I agree with this here. Now the issue is how can you say that there is a collection of things which has no inherent order. If things in the world have order, and mathematicians seek to formalize that order, then where does the idea of "no inherent order" come from? That notion of "no inherent order" is obviously not derived from any instance of order, and if mathematicians are seeking to formalize the idea of order, the idea of "no order" has no place here. It is in no way a part of the order which things have, and therefore ought not enter into the formalized idea of "order".

    Like what? Can you name some of these? Sets correspond to collections.fishfry

    Have you lost track of our conversation? The idea of "no inherent order" is what we are talking about, and this is what I say does not correspond with our observations of the world. We observe order everywhere in the world. Sets do not correspond to collections, because any collection has an inherent order, existing as the group of particular things which it is, in that particular way, therefore having that order, yet as a "set" you claim to remove that order.

    But again I ask you, exactly WHICH mathematical ideas are not based on or inspired by the natural world? You must have something in mind, but I am not sure what.fishfry

    I'll repeat. It's what we've been discussing, your idea of "a set", as a collection of things with no inherent order. Something having no inherent order is not based in, nor inspired by the real world, we don't see this anywhere in the world. We can also look at the idea of the infinite. It is not inspired by anything in the natural world. It is derived completely from the imagination.

    That's a useful mindset to have, so that we don't allow our everyday intuitions interfere with our understanding of the formalism. But of course historically, math is inspired by the real world. Even though the formalisms can indeed get way out there.fishfry

    Let's try this. We'll say that a "formalism" relates to the real world in one way or another, and then we can avoid the issue of whether it is an inductive conclusion. We'll just say that it relates to the world. Now, can we make a category of ideas which do not relate to the real world? Then can we place things like "infinity", and "no order" into this category of ideas? But rules about quantifying things, and rules about chess games do relate to the real world, as formalisms.

    Can you see that these ideas are not formalisms, nor formalizations in any way? Because they are purely imaginary, and not grounded in any real aspects of the natural world, there is no real principles whereby we can say that they are true or false, correct or incorrect. They cannot be classed as formalizations because they do not formalize anything, they are just whimsical imaginary principles. To use your game analogy, they are rules for a game which does not exist. People can just make up rules, and claim these are the rules to X game, but there is no such thing as X game, just a hodgepodge of rules which some people might choose to follow sometimes, and not follow other times, because they are not ever really playing game X, just choosing from a vast array of rules which people have put out there. Therefore there is nothing formal, so we cannot call these ideas formalisms or formalizations.

    The truth is in the thing.fishfry

    I disagree with your notion of truth. I think truth is correspondence, therefore not in the thing itself, but attributable to the accuracy of the representation of the thing. Identity is in the thing, as per the law of identity, but "true" and "false" refer to what we say about the thing.

    If I want to study the planets I put little circles on paper and draw arrows representing their motion. The truth is in the planets, not the circles and arrows. I hope you can see this and I don't know why you act like you can't.fishfry

    I think this is a completely unreasonable representation of "truth", one which in no way represents how the term is commonly used. We say that a proposition is true or false, and that is a judgement we pass on the interpreted meaning of the proposition. We never say that truth is within the thing we are talking about, we say that it is a property of the talk. or a relation between the talk and the thing.

    First, sets are intended to model our everyday notion of a collection. And in order to do a nice formalization, we like to separate ideas. So we have orderless sets, then we add in order, then we add in other stuff. If I want to put up a building, you can't complain that a brick doesn't include a staircase. First we use the bricks to build the house, then we put in the staircase. It's a process of layering.fishfry

    Take a look at your example. The bricks are never "orderless". They come from the factory on skids, very well ordered. Your idea of "orderless sets" in no way models our everyday notion of a collection.

    Our formalization begins with pure sets. It's just how this particular formalization works.fishfry

    The point is that orderlessness is in no way a formalization. A formalization is fundamentally, and essentially, a structure of order. Therefore you cannot start with a formalization of "no order". This is self-contradictory. As I proposed above, the idea of orderlessness, just like the idea of infinite, must be removed from the category of formalizations because it can in no way be something formal. To make it something formal is to introduce contradiction into your formalism.

    If I represent a planet as a circle, you don't complain that my circle doesn't have rocks and and atmosphere and little green men. I'll add those in later.fishfry

    What I'm complaining about is your attempt to represent nothing, and say that it is something. You have an idea, "no inherent order", which represents nothing real, It's not a planet, a star, or any part of the universe, it's fundamentally not real. Then you say that this nothing exists as something, a set. So this nothing idea "no inherent order" as a set. Now you have represented nothing (no inherent order), as if it is the property of something, a set.

    You act like all this is new to you. Why?fishfry

    The idea of contradictory formalisms is not at all new to me. I am very well acquainted with an abundance of them. That's why I work hard to point them out, and argue against them.

    I refer you to Galileo's sketch of Jupiter's moons. With this picture he started a scientific and philosophical revolution. Yet anyone can see that these little circles are not planets! There are no rocks, no craters, no gaseous Jovian atmosphere. Why do you pretend to be mystified by this obvious point?fishfry

    I don't see how this is analogous. Galileo represented something real, existing in the world, the motions of Jupiter's moons. What I object to is representing something which is not real, i.e. having no existence in the world, things like "no inherent order". This is not a representation, it is a fundamental assumption which does not represent anything. If a formalism is a representation, then the fundamental assumption, "no inherent order" cannot be a part of the formalism.

    Do you feel the same way about maps?fishfry

    Consider this analogy. The idea of "no inherent order" describes nothing real, anywhere. So why is it part of the map? Obviously it's a misleading part of the map because there is nowhere out there where there is no inherent order, therefore I would not want it as part of my map.

    Tell me this, Meta. When you see a map, do you raise all these issues?fishfry

    Yes, I get very frustrated when the map shows something which is not there. I look for that thing as a marker or indicator of where I am, and when i can't find it I start to feel lost. Then I realize that it was really the maker of the map who was lost.
  • Can it be that some physicists believe in the actual infinite?
    An order that is shown can be seen:Luke

    But we cannot see the inherent order:Luke

    I already explained in what sense we see the inherent order, and do not see it, just like when we look at an object and we see the molecules of that object. The order is there, just like the molecules are there, and what our eyes are seeing, yet we do not distinguish nor apprehend the molecules nor the order, so we cannot say that we see it. We are always seeing things without actually seeing them, because it is a different sense of the word "see".

    There was no change to my position, just a need to go deeper in explanation, to clarify the use of common terms, to assist you in understanding.

    The idea, as with anything else mathematical, is that we have some aspect of the real world, in this case "order"; and we create a mathematical formalism that can be used to study it. And like many mathematical formalisms, it often seems funny or strange compared to our everyday understanding of the aspect of the world we're trying to formally model.fishfry

    I follow this, it seems to be exactly what I've been trying to explain to Luke, so we're on the same page here.

    After all bowling balls fall down, and the moon orbits the earth. To help us understand why, Newton said things like F=maF=ma, and F=m1m2r2F=m1m2r2. And E=12mv2E=12mv2, and things like that. And you could just as easily say, "Well this doesn't seem to be about bowling balls. These are highly artificial definitions that Newton just made up." And you'd essentially be right, while at the same time totally missing the point of how we use formalized mathematical models in order to clarify our understanding of various aspects of the real world.fishfry

    These are what I would call universals, generalities produced from inductive reasoning, sometimes people call them laws, because they are meant to have a very wide application. As inductive conclusions they are derived from empirical observations of the physical world

    So if you can see the difference between a real world thing like order, on the one hand; and how mathematicians formalize it, on the other; and if you are interested in the latter, if for no other reason than to be better able to throw rocks at it, I'm at your service.fishfry

    The issue is with what you call the purely abstract. It appears to me, that you believe there are some sort of "abstractions" which are completely unrelated to the physical world. They are not generalizations, not produced from inductive reasoning, therefore not laws, or "artificial definitions", in the sense described above. You seem to think axioms of "pure mathematics" are like this, completely unrelated to, and not derived from, the physical world.

    That's the mindset for understanding how math works. You seem to object to math because it's a formalized model and not the thing itself, but that's how formal models and formal systems like chess work. They are not supposed to be reality and it's no knock agains them that they are not reality. They're formal systems. If you can see your way to taking math on its own terms, you'd be in a better position to understand it. And like I say, for no other reason than to have better arguments when you want to throw rocks at it.fishfry

    I object to the parts of these formalizations which do not correspond with our observations of the world. These would be faulty inductive conclusions, falsities. You claim that they do not need to correspond, that they a completely unrelated to the physical world. Yet when you go to describe what they are, you describe them as inductive conclusions, above, which are meant to correspond, in order that they might accurately "clarify our understanding of various aspects of the real world.".

    So I see a disconnect here, an inconsistency. You describe "pure abstractions" as being related to the world in the sense of being tools, or formalizations intended to help us understand the world. Yet you insist that those who create these formalizations need not pay any attention to truth or falsity, how they correspond with the physical world, in the process of creating them. And you claim that when mathematicians dream up axioms, they do not pay any attention to how these axioms correspond with the world, because they are working within some sort of realm of pure abstraction.

    As an example consider what we've discussed in this thread concerning " a set". It appears to me, that mathematicians have dreamed up some sort of imaginary object, a set, which has no inherent order. This supposed object is inconsistent with inductive conclusions which show all existing objects as having an inherent order. You seem to think, that's fine so long as this formalized mathematical system helps us to understand the world. I would agree that falsities, such as the use of counterfactuals, may help us to understand the world in some instances. But if we do not keep a clear demarcation between premises which are factual, and premises which are counterfactual, then the use of such falsities will produce a blurred or vague boundary between understanding and misunderstanding, where we have no principles to distinguish one from the other. If axioms, as the premises for logical formalizations are allowed to be false, then how do we maintain sound conclusions?
  • Can it be that some physicists believe in the actual infinite?
    I don't care about your latest position. In case you missed it, my entire point for the last three or four pages is that you changed your position three or four pages ago. This is obvious from the quote that you somehow managed to overlook:Luke

    As I explained, I haven't changed my position. You have not yet understood it.
  • Can it be that some physicists believe in the actual infinite?
    Here you say that "the exact spatial positioning" is not what is being demonstrated (i.e. shown) in the diagram.Luke

    No that's not a good interpretation. You need to respect the fact that what is being shown to the observer, as inhering within the physical thing being used in the demonstration, is not the same order as that which exists in the mind of the person performing the demonstration. I said there is a demonstration of "an order". I also said "the order which the mind apprehends, based on the demonstration is not the same order as that which inheres within the things shown." Then I said "the order apprehended in the mind is not the same as the order in the object. Therefore 'the exact spatial positioning' is not what is being demonstrated." The exact spatial positioning is what inheres within the object, and though it is what is being shown by the one doing the demonstration, it is not the same order as what the person is trying to demonstrate. This is why I said fishfry's claim that the order was random is false. That's what the person doing the demonstration was trying to demonstrate, but it was not what the demonstration actually showed.

    What is "being demonstrated" is an order which exists in the mind of the person making the demonstration. This is the first line, the "demonstration of an order". What appears to the person making the interpretation, as what is "shown", is the physical object with an inherent order. This is a representation of the order which exists in the mind of the person making the demonstration. It is not the same order, but a representation of it. So the order being demonstrated is not the same as the order which inheres within the representation, (as a representation is different from the thing it represents), and the order in the mind of the person interpreting what is shown, is not the same as the order which inheres in the object. And, because of this medium, which exists between the one demonstrating and the one interpreting, the physical object as symbols, the order on the minds of the two individuals is not the same. That as I said is why we misunderstand each other.




    Which is it?Luke

    As I said, numerous times, the mind creates an order to account for the order assumed to be in the thing Therefore the order in the mind it is not the order shown by the thing. No change of position, just a difficult ontological principle to describe to someone with a different worldview.
  • Can it be that some physicists believe in the actual infinite?
    But you didn't say any of those things. Instead you just accepted the mathematical definition I repeatedly gave you, and then kept arguing from your own private definition. When I finally figured out what you were doing, I was literally shocked by your bad faith and disingenuousness. I'm willing to have you explain yourself, or put your deliberate confusion-inducing equivocation into context, but failing that I no longer believe you are arguing in good faith at all. You have no interest in communication, but rather prefer to waste people's time by deliberately inducing confusion.fishfry

    Let me remind you. You started in the discussion with the repeated assertion "sets have no inherent order". Check this post, I think you'll see that claim stated a number of times.

    My God, you wield your ignorance like a cudgel. I could have just as easily notated the two ordered sets as:

    * ({1,2,3,4,…},<)({1,2,3,4,…},<) and

    * ({1,2,3,4,…},≺)({1,2,3,4,…},≺)

    which shows that these two ordered sets consist of the exact same underlying set of elements but different linear orders. Remember that sets have no inherent order. So {1,2,3,4,...} has no inherent order. The order is given by << or ≺≺.
    fishfry

    When I said order is spatial and temporal, you claimed a completely "abstract order", which I didn't understand, and still don't understand because you haven't yet explained this in a coherent way. So I continued to insist order was spatial or temporal until you gave me examples of first and second place in competition, what I called order relative to best. I accepted this as non-spatial or temporal ordering, but I still don't see it as completely abstract because it still is based in concrete criteria for judgement.

    You proceeded to define order in terms of "less than", as if you thought that this is purely abstract. However, I had already explained how "less that" is dependent on, defined in relation to, quantity. So you only contradicted your earlier claim that order is logically prior to quantity, by defining order in relation to quantity. And, since quantity is dependent on spatial separation between individuals you have not really escaped the spatial aspect of order, to get to a purely abstract order.

    So this is where we stand. You have claimed a purely abstract order, but given me an order based in "less than" which is based in quantity. And quantity relies on spatial conception, so you have really given me a concept of order based in spatial conceptions..

    By "shown" you do not mean "displayed". After all, "it is not visible". Therefore, you must not be making the argument - as you did earlier - that we see the order but do not apprehend it.Luke

    Luke. I very consistently said, over and over again, that we do not see the order.

    You are saying that the "exact spatial positioning" is logically demonstrated by
    ("shown" in) the diagram, but it is not apprehended? If the exact spatial positioning is not (or cannot be) apprehended, then how has it been logically demonstrated by the diagram?
    Luke

    I went through that already, more than once. There is a logical demonstration of an order. The order which the mind apprehends, based on the demonstration is not the same order as that which inheres within the things shown. You keep neglected the principal point of the argument, that the order apprehended in the mind is not the same as the order in the object. Therefore "the exact spatial positioning" is not what is being demonstrated. So, do not ask again, this same strawman question. Check out these quotes:

    Of course, location is intelligible, conceptual, so it's not actually sensed it's something determined by the mind, just like meaning. When you tell someone something, they do not sense the meaning. This is "showing" in the sense of a logical demonstration. And the point is that upon seeing, or hearing what is shown, the mind may or may not produce the required conceptualization, which would qualify for what we could call apprehending the principle. More specifically, the conceptualization produced in the mind being shown the demonstration is distinct and uniquely different from the conceptualization in the mind which is showing the demonstration, therefore they are not the same. That is why people misunderstand each other..Metaphysician Undercover

    I answered the question, it's just like a logical demonstration. Like when one person shows another something, and the other makes a logical inference. All instances of being shown something intelligible, i.e. conceptual, bear this same principle. We perceive something with the senses and conclude something with the mind. The things that I sense with my senses are showing me something intelligible, so I produce what serves me as an adequate representation of that intelligible thing, with my mind.Metaphysician Undercover

    Inherent order is a wider concept, applying in particular to biological systems and natural phenomena. Ordering is more specific having to do with listing. I think you are discussing the latter.jgill

    Fishfry claimed that a set has no inherent order, and I questioned whether it is possible that there could be a thing with no inherent order.

    i really do not think that "listing" is the subject here, because listing Is an ordering of symbols, not the things represented by the symbols. The list may represent an order, but the reason for the order is something other than the spatial order of the symbols. And fishfry insisted on the reality of a purely abstract order, which could not be a spatial relation of symbols, as listing is. We would need to find a principle of order which is purely abstract.
  • Can it be that some physicists believe in the actual infinite?
    Sorry, I haven't kept up. Are you speaking of inherent order or inherent ordering?jgill

    I think I said "inherent order", but I don't quite understand the point to making the difference.

    But you now concede that sense perception is involved in showing.Luke

    Of course sense perception is involved! Where have you been? We've been talking about seeing things and inferring an order. My point was that we do not sense the order which inheres within the thing, we produce an order in the mind. I never said anything ridiculous like we do not use the senses to see the thing, when we produce a representation of order for the thing.

    I would say that the word "shown" here means what is visible in, or displayed by, the diagram; not what is demonstrated or proved by the diagram.Luke

    But we went through this already. I explained that this is not what I meant by "shown"., and the reason why, being that order is inferred by the mind, it is not visible. I went through a large number of posts explaining this to you. It seemed to be a very difficult thing for you to grasp. And now, when you finally seemed to grasp the meaning associated with the way I used the term, you've gone right back to assuming that this is not the way I used it, despite all those explanations. Why? We just go around in circles, it's stupid. You pretend to have understood my explanation as to what I meant by "shown", then all of a sudden you say but obviously that's not what you meant. It's ridiculous. It' like you're saying 'I would not have used "shown" that way, therefore you did not'. And when i go through extreme lengths to explain that this is actually how I used the term, to the point where you seem to understand, you turn right back to the starting point, claiming but I would not have used it that way, therefore obviously you didn't. What's the point?

    All that remains for you to explain is your contradictory pair of claims that (i) the inherent order is the exact spatial positioning that we do apprehend in the diagram; and that (ii) we are unable to apprehend the inherent order.Luke

    I stated repeatedly that we do not apprehend the exact spatial positioning, so you have a strawman here.. You don't seem to be capable of understanding any of what I am saying, we're just going around in circles of misunderstanding. it's pointless.
  • Can it be that some physicists believe in the actual infinite?
    You avoid the question instead of answering it. How can location be shown to someone without it being sensed?Luke

    I answered the question, it's just like a logical demonstration. Like when one person shows another something, and the other makes a logical inference. All instances of being shown something intelligible, i.e. conceptual, bear this same principle. We perceive something with the senses and conclude something with the mind. The things that I sense with my senses are showing me something intelligible, so I produce what serves me as an adequate representation of that intelligible thing, with my mind.

    "Shown" in the sense of a logical demonstration is different to "shown" in the sense of your statement: "the exact spatial positioning shown in the diagram". That's obvious.Luke

    Sorry, you've lost me. You appear to be making up a difference in the meaning of "shown", for the sake of saying that I contradict myself. I take back my apology, I'm going back to thinking that you do it intentionally.
  • Transhumanism: Treating death as a problem

    There's an odd sort of reality of life which is almost a sort of paradox. The individual living being in the extreme complexity of its existence, as a delicately balanced organism, is very susceptible to death. We all run the risk of dying on a daily basis. Death may be waiting for you around any corner, or curve. But life in general, as a beautiful vast array of all sorts of different organisms, is extremely robust, and resilient in consequence to the occurrence of any possible extermination events.

    The beauty of life is found in its diversity, and this provides its strength. Take a look at all the different colours of flowers there are, and think about how difficult it would be to produce such an extensive array. And that's just one simple property, colour.

    The fragility of the individual, although it results in the death of each and every one of us, is not a weakness however, because this is the means by which life tests all the different boundaries of the the environment which it inhabits, thereby producing all the diverse individuals which provide its overall strength. We ought not seek to limit diversity, because that would be a self-imposed weakness, making the vulnerability of the individual, universal.
  • Can it be that some physicists believe in the actual infinite?
    Do you think that location can be shown to someone without it being sensed?Luke

    Of course, location is intelligible, conceptual, so it's not actually sensed it's something determined by the mind, just like meaning. When you tell someone something, they do not sense the meaning. This is "showing" in the sense of a logical demonstration. And the point is that upon seeing, or hearing what is shown, the mind may or may not produce the required conceptualization, which would qualify for what we could call apprehending the principle. More specifically, the conceptualization produced in the mind being shown the demonstration is distinct and uniquely different from the conceptualization in the mind which is showing the demonstration, therefore they are not the same. That is why people misunderstand each other..

    I now see why we have such a hard time understanding each other, we seem to be very far apart on some fundamental ideas, which form the basis for our conceptualizing what is shown by the other. I thought you were intentionally misreading me, in order to say that I contradict myself. But now I see that this is the way you actually understand those words. My apologies for the accusation.
  • How do you think we should approach living with mentally lazy/weak people?
    As a result you can find yourself living with people who are simple in thought who don't give the extra effort to think from a philosophers perspective.Tiberiusmoon

    Each person has one's own place within a society, and many of these places do not require complex philosophical thought, so there is not need to compel these people toward it. What is a problem though, I believe, is bad habits of thought. Bad habits may enter into any field or discipline involved in complex thought, and may in some cases be associated with a form of laziness. For instance, in some cases we are encouraged to accept the principles presented by others whom we apprehend as authorities, without asking for justification. This form of laziness seems to pervade modern academia.
  • Can it be that some physicists believe in the actual infinite?
    Sorry Luke, now it's me who can't understand what you're saying. Do you think that we sense location?
  • Can it be that some physicists believe in the actual infinite?
    Given that (1) we do not perceive order via the senses and that (2) we cannot apprehend inherent order, then how can the inherent order be the exact spatial positioning shown in the diagram?Luke

    I think I've answered this about three times, so either I don't understand your question, or you don't understand my answer, or both.

    Even if I grant you that there is an inherent order to the universe, how can you say that the inherent order of the diagram is the same as the order that we perceive via the senses, or "the exact spatial positioning shown"?Luke

    I told you, we don't perceive order with the senses, we create orders with the mind. Judging by this statement, I'm thinking it's you who is the one not understanding.

    I note your change in position. You are no longer arguing that the inherent order cannot be apprehended. You have now adopted the weaker claim that the inherent order cannot be completely apprehended.Luke

    Again, you're looking for hidden meaning to make unjustified inferences. The inherent order cannot be apprehended by us. I can't even imagine what it would mean to partially understand an order. If my use of "completely" misled you, I retract it as a mistake, and apologize.

    More importantly, as far as I can tell, inherent order is not the kind of order that mathematicians are concerned with.Luke

    Maybe, but fishfry claimed that a set has no inherent order. So if mathematicians are making such assumptions in their axioms, then they are concerned with it; concerned enough to exclude it from the conceptions of set theory. The issue I'm concerned with is the question of whether a thing without inherent order is a logically valid conception.
  • Can it be that some physicists believe in the actual infinite?
    You're factually wrong.

    Is the set {0,1,2,3,4} identical to the set {0,1,2,3,4}? I have to assume you'd say yes.

    But 2 + 3 and 5 are both representations of the set {0,1,2,3,4}. So they're identical.
    fishfry

    The way you described sets in this thread, a set is something which cannot have an identity because it has no inherent order. Therefore I cannot agree that the set {0,1,2,3,4} is identical to the set {0,1,2,3,4}. It seems like a set is an abstraction, a universal, rather than a particular, and therefore does not have an identity as a "thing". It is particulars, individual things, which have identity according to the law of identity. Notice that the law of identity says something about things, a thing is the same as itself.

    The law of identity is intended to make that category separation between particular things, and abstractions which are universals, so that we can avoid the category mistake of thinking that abstractions are things. "The set {0,1,2,3,4}" refers to something with no inherent order, so it does not have an identity and is therefore not a thing, by the law of identity, To say that it is a thing with an identity is to violate the law of identity.

    Well, math does not violate this principle. 2 + 3 and 5 are identical. They are both representations of the set represented by {0,1,2,3,4}, which of course is not actually "the" set, but is rather yet another representation of that abstract concept of 5.fishfry

    This is the whole point of the law of identity, to distinguish an abstract concept from a thing, so that we have a solid principle whereby we can avoid the category mistake of thinking of concepts as if they are things. A thing has an identity which means that it has a form proper to itself as a particular. To have a form is to have an order, because every part of the thing must be in the required order for the thing to have the form that it has. So to talk about something with no inherent order, is to talk about something without a form, and this is to talk about something without an identity, and this is therefore not a thing.

    Only to the extent that you don't seem to think a thing is identical to itself. Because when mathematicians use equality, they mean identity, and this is provable from first principles. They either mean identity as sets; which is easy to show; or, they often mean identical structurally. This is a more subtle philosophical point.fishfry

    The problem is not that I don't think a thing is the same as itself. That is the law of identity, which I adhere to. The problem is that you make the category mistake of believing that abstract conceptions are things. Because you will not admit that a concept is not a thing, you make great effort to show that two distinct concepts, like what "2+3" means, and what "5" means, which have equal quantitative value, refer to the same "thing". Obviously though, "2+3" refers to a completely different concept from "5".

    If you would just recognize the very simple, easy to understand, fact, that "2+3" does not mean the same thing as "5" does, you would understand that the two expressions do not refer to the same concept. So even if concepts were things, we could not say that "2+3" refers to the same thing as "5", because they each have different associated concepts. And it's futile to argue as you do, that the law of identity is upheld in your practice of saying that they refer to the same "mathematical object", because all you are doing is assuming something else, something beyond the concepts of "2+3", and "5", as your "mathematical object". This supposed "object" is not a particular, nor a universal concept, but something conjured up for the sake of saying that there is a thing referred to. But there is no basis for this object. It is not the concept of "2+3" nor is it the concept of "5", it is just a fiction, a false premise you produce for the sake of begging the question in your claim that the law of identity is not violated.

    You said that "1) We do not perceive order with the senses" and that "2) We cannot apprehend the inherent order". Therefore, how do you know that what's shown in the diagram is the exact positioning of the parts (i.e. the inherent order)?Luke

    It is a fundamental ontological assumption based in the law of identity, that a thing has an identity. In Kant we see it as the assumption that there is noumena, which is intelligible, just not intelligible to us. In Descartes we see skepticism as to whether there even is external objects.

    So we assume that there is something, the sensible world, and we assume it to be intelligible, it has an inherent order. To answer your question of how do we "know" this, it is inductive. We sense things, and we conclude that there is reality there. Also, we have some capacity to understand and manipulate what is there, so we conclude that there is intelligibility there, intelligibility being dependent on ordering. We have some degree of reliability in our understanding of the ordering therefore there must be some ordering.

    Isn't the positioning of the dots that I perceive the "perspective dependent order" which you earlier stated was not the inherent order? So how can the diagram show the inherent order to anybody?

    The inherent order cannot be perceived by the senses and we can't apprehend it, anyway.
    Luke

    Yes, you perception provides for you, the basis for a perspective dependent order, which your mind produces. What the object is showing you, its inherent order, and the order which you are producing towards understanding the inherent order, are two distinct things. As I described, there is some degree of inconsistency, constituting a difference, between what is shown to you, and what you apprehend from that showing. The claim of difference is justified by our failures. The inherent order is shown. It is not perceived by the senses. If you try to understand the inherent order, your mind will produce an order which you think best represents that which inheres in the object.

    Consider, that in seeing objects we do not see the molecules, atoms or other fundamental particles, we have to figure those things out as a representation of the order which inheres within. But we cannot completely apprehend that order because our minds are deficient. This doesn't mean that sentient beings will never be able to apprehend it, or that there isn't an omniscient being which already can apprehend it. And even if it is impossible that human beings or any sentient beings will ever be able to understand it in perfection, like an omniscient being is supposed to be able to, we can still improve our understanding, i.e. get a better understanding, and decrease our failures.

    If "We cannot apprehend the inherent order", then how do you know that our representations are inaccurate?Luke

    I think we judge the accuracy of our understanding mostly by the reliability of our predictions. But reliability is perspective dependent and subjective. So where some people see reliability, I see unreliability. It all depends on what type of predictions you are looking for the fulfillment of.

    If the inherent order is unintelligible to the human mind by definition, then what makes inherent order preferable to (or distinguishable from) randomness?Luke

    Order is fundamentally intelligible. So assuming order is to assume the possibility of being understood, which is to inspire the philosophical mind which has the desire to understand. To assume randomness is to assume unintelligibility which is repugnant to philosophical mind which has the desire to understand.

    So, as I explained. If the object appears (seems) to be unintelligible (without inherent order), we need to determine why. Is it our approach (are we applying the wrong principles in our attempt to understand), or is it the reality, that the object truly has no inherent order? The latter is repugnant to the philosophical mind, and even if it were true, it cannot be confirmed until the possibility of the former is excluded. Therefore, when the object appears to be unintelligible (without inherent order), we must assume that our approach is faulty (we are applying the wrong principles in our attempt to understand), and we must subject all principles to extreme skepticism, before we can conclude that this object is truly unintelligible (without inherent order). The rational approach is to assume that we are applying the wrong principles, and to assume that the object has no inherent order is irrational.
  • Can it be that some physicists believe in the actual infinite?
    On the contrary. 2 + 3 and 5 are mathematically identical. There is not the slightest question, controversy, or doubt about that.fishfry

    As per the quotes above, from Wikipedia, the mathematical notion of identical , as equal, is not consistent with the philosophical notion of identity, described by the law of identity. In other words, mathematicians violate the law of identity to apply a different concept of identity, making two things of equal value mathematically identical. You might accept this, and we could move on to visit the possible consequences of what I believe is an ontological failure of mathematics, or you could continue to deny that mathematicians violate this principle. The latter is rather pointless.

    You spoke of an "external perspective", which implies an internal perspective. You might recall I asked you about it and you responded:Luke

    If all perspectives are external to the object, then "perspective" is necessarily external, and saying "external perspective" just emphasizes the fact that perspective is external. Internal perspective is not implied, just like saying "cold ice" doesn't imply that there is warm ice. That's why I referred to Kant, to show how our perspective of the thing in itself is external to the thing.

    Your current argument is that we do not perceive order with the senses, and that we cannot apprehend inherent order at all. Therefore, how is it possible that the inherent order is the exact spatial positioning shown in the diagram?Luke

    Why not? I don't understand your inability to understand. Let me go through each part of your question. 1) We do not perceive order with the senses. No problem so far, as we understand order with the mind, not the senses. 2) We cannot apprehend the inherent order. Correct, because the order which we understand is created by human minds, as principles of mathematics and physics, and we assign this artificially created order to the object, as a representation of the order which inheres within the object, in an attempt to understand the inherent order. But that representation, the created order is inaccurate due to the deficiencies of the human mind. 3)The inherent order is the exact positioning of the parts, which is what we do not understand due to the deficiencies of the human mind.

    Does that help? You have emboldened the word "shown". Why? Do you understand that something can be shown to you which you do not have the capacity to understand? The physical world shows us many things which we do not have the capacity to understand. For example, the theologians used to argue that the physical world shows us the existence of God. Most people would claim that the physical world is not evidence of God, and in no way does the physical world show us God. The theologian would say that you just do not understand what is being shown to you. the exact order is being shown to us but we do not understand it.
  • Can it be that some physicists believe in the actual infinite?
    Fishfry will argue fervently that "pure mathematics" is not influenced by physics. Perhaps some mathematicians actually have no respect for physical principles, and that's why infinities have become the norm, rather than the abnormal.
  • Can it be that some physicists believe in the actual infinite?
    Apparent order is not perceived? Do you know what "apparent" means?Luke

    In that context, "apparent" must mean "seems". If you used "apparent" to mean "perceived by the senses", I would say that you had stated an oxymoron. We apprehend order with the mind, we do not perceive it with the senses.

    If apparent order is not perceived, then your earlier distinction between "internal" and "external" perspective is irrelevant; it's not a matter of perspective at all. So why did you introduce the distinction between "internal" and "external" perspective?Luke

    I don't believe I said anything about an internal perspective. I distinguished between the order which inheres within the thing itself (which we assume must be real to account for the consistency we note from observations), and the order which we assign to things, from our external perspective of them. This is the reason why our knowledge of the order of things is fallible, the order which we say something has is not the same as the order which it actually has. The best we can say is that we have created a representation of the order that things have. We create the representations through the means of analysis of empirical observations, which do not provide us with the inherent order, in conjunction with theorizing, hypotheses. So there is a separation, a medium consisting of observation and theory, which lies between the apparent order (the order which things seem to have), and the true order which inheres within the things themselves.

    The reason why I introduced this distinction is because fishfry claimed that there is a sort of thing, "a set", which has no inherent order at all. I said that such a thing does not exist, because to exist is to have some sort of inherent order. Fishfry scoffed at this. So I proceeded to ask fishfry to explain this type of unity of parts, within which the parts have no order. How could there be such a unity? The point being, that this is simply an imaginary thing stated, 'parts without order', which doesn't correspond to any reality, which is really a logical inconsistency representing falsity, because it is impossible to have parts without order. To be a part of something implies an order in relation to a whole, without that order it cannot be said to be a part. We would have to call it something other than a "part". The point being, that the whole, which the so-called part is said to be a part of, "the set", is not a true whole because it provides no order relations to the so-called parts. Things existing with absolutely no relations of order cannot be said to form a whole, or unity of any kind.
  • Can it be that some physicists believe in the actual infinite?
    Do we perceive both the apparent order and the inherent order? Is there a difference between the apparent order and the inherent order? If so, what is the difference between them?Luke

    The apparent order is made up, a created order, assigned to the group of things, so it is not perceived, it is produced by the mind.

    If there is a difference between the apparent order and the inherent order, then why did you state:Luke

    Why not? The order which we assign to things is clearly not the same as the "exact" order which inheres within things or else we'd have an absolutely perfect understanding of the order of the universe.

    Not a word of this is even on topic relative to whether 2 + 3 and 5 are identical. Since mathematically they are, and as a mathematical expression it must necessarily be interpreted in terms of mathematics, nothing you say can make the slightest difference. Excluded middle? Did Aristotle anticipate intuitionism? That's interesting.fishfry

    As I've explained to you already, the idea that 2+3 is mathematically the same as 5, is simply a misunderstanding of the difference between equality and identity. They are equal, but equal is distinct from identity. I've told you this numerous times before, but you do not listen. Nor do you seem to pay any attention to my references, only repeating your misunderstanding in ignorance.

    However, I'll reproduce for you the opening lines from the Wikipedia entries on both "equality" and "identity" below, just to remind you of how bad your interpretation really is.

    In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object.

    In philosophy, identity, from Latin: identitas ("sameness"), is the relation each thing bears only to itself.
  • Can it be that some physicists believe in the actual infinite?
    Are these both the inherent order (bolded)? If so, then why do you say "along with the order"?Luke

    Yes, you see the object along with the order which inheres within, meaning you see the order, you just do not apprehend it. Consider the dots, we see them, we must see the order because it's there, yet fishfry claimed that the dots were randomly arranged, indicating the order was not apprehended

    So, a professional philosopher. At one point in the article he says: "We are indeed rationally justified in thinking 2 plus 3 will always be 5, because 2 plus 3 is not distinct from but rather identical with 5." My emphasis. So at least one professional philosopher would object to your claim that they are not identical.fishfry

    There are numerous philosophers who argue against the law of identity as stated by Aristotle, Hegel opposed it, as is evident here: https://thephilosophyforum.com/discussion/9078/hegel-versus-aristotle-and-the-law-of-identity/p1

    What I see as an issue which arises from rejecting the idea that each particular object has its own unique identity (law of identity), is a failure of the other two interrelated laws, non-contradiction, and excluded middle. Some philosophers in the Hegelian tradition, like dialectical materialists, and dialetheists, openly reject the the law of non-contradiction. When the law of identity is dismissed, and a thing does not have an identity inherent to itself, the law of non-contradiction loses its applicability because things, or "objects" are imaginary, and physical reality has no bearing on how we conceive of objects.

    There are specific issues with the nature of the physical world that we observe with our senses, which make aspects of it appear to be unintelligible. There must be a reason why aspects of it appear as unintelligible. We can assume that unintelligibility inheres within the object itself, it violates those fundamental laws of intelligibility, or we can assume that our approach to understanding it is making it appear.as unintelligible. I argue that the latter is the only rational choice, and I look for faults in mathematical axioms, and theories of physics, to account for the reason why aspects appear as unintelligible. I believe this is the only rational choice, because if we take the other option, and assume that there is nothing which distinguishes a thing as itself, making it distinct from everything else (aspects of reality violate the law of identity), or that the same thing has contradictory properties at the same time (aspects of reality violate the law of non-contradiction), we actually assume that it is impossible to understand these aspects of reality. So I say it is the irrational choice, because if we start from the assumption that it is impossible to understand certain aspects of reality, we will not attempt to understand them, even though it may be the case that the appearance of unintelligibility is actually caused by the application of faulty principles. Therefore it is our duty subject all fundamental principles to skeptical practices, to first rule out that possibility before we can conclude that unintelligibility inheres within the object.

    Aristotle devised principles whereby the third fundamental law, excluded middle would be suspended under certain circumstances, to account for the appearance of unintelligibility. Ontologically, there is a very big difference between violating the law of excluded middle, and violating the law of non-contradiction. When we allow that excluded middle is violated we admit that the object has not been adequately identified by us. When we allow that non-contradiction is violated we assume that the object has been adequately identified, and it simply is unintelligible.
  • Can it be that some physicists believe in the actual infinite?
    If you were talking about the inherent order the entire time, and if the inherent order is not perceived or apprehended, then why did you say:Luke

    I don't see any problem with those quotes. As I said, the order is right there, in the object, as shown by the object, and seen by you, as you actually see the object, along with the order which inheres within the object, yet it's not apprehended by your mind.

    Sorry L:uke, but I find it extremely ridiculous that you are trying to tell me what I was talking about. As I said, you need to go back and reread the entire section, with the understanding, and commitment, that it's all about the inherent order, therefore the order which inheres within the object. And quit trying to force your nonsense interpretation, insisting that you know better than I do, what I was trying to say, simply so that you can say that I was trying to contradict myself. It's foolish of you.
  • Can it be that some physicists believe in the actual infinite?
    If you see now, that the entire time, I was talking about the order which inheres within the thing itself, as "inherent order", rather than some perceived, apprehended, or creatively imagined order, you can go back and reread the entire section and clear up your misunderstanding. I recommend that anytime you feel the inclination to interpret in the latter sense, and thereby apprehend contradiction, you suppress this inclination, and remain true to the intentions of the author. Afterwards you can ask me for clarification if any points appear to be unclear.
  • Can it be that some physicists believe in the actual infinite?
    But now you say that Kant's phenomena-noumena distinction is not the basis for your argument.Luke

    Right, this principle has a long tradition, it goes back at leas to Aristotle, with the law of identity, so it is definitely not based in Kant. Kant has simply presented the similar principle in his own way. I present it in my way. The principle is not "the same" it is a similar principle, needing to be refined and understood in the unique way of each particular individual mind who desires to understand..

    In Aquinas, we see that independent Forms are fundamentally "intelligible" but not intelligible to the human intellect, because that intellect is united with a material body. This position, of being dependent on a body and the sense organs makes the intellect deficient. We find this same principle in Kant. The human intellect produces knowledge from phenomena which is dependent on sensation, and sense appearances. Notice that Kant refers to the noumenon as "intelligible", though it is not intelligible to us human beings, due to this predicament, which is not a contradiction.

    Yes, but in the posts before you introduced Kant, you were clearly saying that the appearances were the reality (i.e. direct realism), as demonstrated by the quotes.Luke

    No, I don't believe I mentioned "appearances". And "inherent" clearly means within the object, as what inheres within. So if you interpreted me as saying the "inherent order" is part of the appearance of the object within a mind, rather than within the thing itself, I think this was a matter of misinterpretation. You did demonstrate some confusion as to what "inherent" means, as if you were somewhat unfamiliar with the word, so perhaps you thought I was talking about an order abstracted from an appearance, rather than an inherent order at that time.. But if you understood what "inherent" means, and what "appearance" means, you would not have interpreted in this contradictory way.

    I think perhaps the issue was confused because we were talking about a diagram, which is intended to show something. Therefore there is a number of levels of representation which adds ambiguity. The diagram is an actual thing itself, with an inherent order. But it is also made to represent an order (an apparent order), which a human mind apprehends. This produced the problem with fishfry claiming it was "random", lacking order, because that is the intended (apparent order) which it was made to represent, However, I argued that there is necessarily an inherent order within the thing shown, and fishfry's claim that it did not show an order, that it was "random", is a false claim. If you had understood this argument from me, you would have recognized that I was making the same distinction at that time.

    You asked us here (prior to your introduction of Kant) to take a look at the diagram and see the order the dots have, and that they could not have any other order. Yet now (after your introduction of Kant) you are trying to convince us of the opposite: that there must be another order - the inherent order - which is different to the order we can see in the diagram. Moreover, you have claimed that the appearance of order and the inherent order could not be the same just by chance, despite your admission that you don't know whether or not they could be the same.Luke

    That's a misinterpretation. I was asking the same thing both times, to look at the thing, and see that there is an order within the thing itself. What seems to be causing you confusion is the fact that we can look at a thing, and conclude that there is order inherent within (that's what makes a thing intelligible) without actually understanding the order., i.e. we see order without understanding it.

    To return to my recent point, you have conceded that there are "many other types" of order which are not "temporal-spatial", therefore your references to phenomena-noumena (or indirect realism or whatever) do not apply to these many other types of order. Therefore, you cannot claim that there is some hidden order to these other types. While that might be irrelevant to your claims, it is not irrelevant to the criticisms of your claims made by the other posters here. You are the only one arguing that order must involve spatio-temporal phenomena (and/or noumena).Luke

    I don't understand your point. Your reference to "hidden order" doesn't make sense. I'm not talking about a hidden order, and this idea seems to be the source of your misunderstanding. The order is right there in plain view, as things are, but it is just not understood, because we do not have the capacity to understand it.
  • Can it be that some physicists believe in the actual infinite?
    So you don't know whether intention has anything to do with Kant's phenomena-noumena distinction?
    And yet you still use this distinction as the basis of your argument regarding inherent order?
    Luke

    I don't use that distinction as the basis for my argument, I gave that distinction as an example which i thought you might be able to understand.

    You tried to draw an analogy between your supposed inherent order and Kant's noumena. When I pointed out that you had already conceded that "many other types" of order are not spatio-temporal and therefore not noumenal, you said that one other type (best to worst) "is relevant to intention, therefore phenomenal". If you don't know whether intention has anything to do with Kant's phenomena-noumena distinction, as you now admit, then you cannot claim that best-to-worst order is "relevant to intention, therefore phenomenal".Luke

    Come on Luke, use some intelligence. Kant did not have to name every instance of what contributes to phenomena for us to place things in that category. If you think I am wrong, and intention ought not be placed in that category, then just tell me. But please give reasons. Simply saying Kant didn't explicitly say it therefore, you're wrong in your analogy, is pointless.

    What strawman interpretation? Instead of empty accusations, go ahead and explain how or what I have misinterpreted.Luke

    I told you how you misinterpreted., You claimed a contradiction when I said I couldn't describe something which was shown. That is just an indication of the limits to human intelligence, and word use, not a contradiction.

    Pure contradiction.Luke

    Thanks for all the quotes removed from context. To be shown, or demonstrated does not mean to be stated, I went through that in the last post, and again above. And, "the positioning of those points relative to each other is describable" does not mean that I have the capacity to describe them. I do believe I mentioned that it would require an intelligence superior to a human intelligence, like a divine intellect. I was arguing the deficiencies of the human intellect, in being incapable of describing what is inherently describable.

    This is exactly the problem which quantum physics actually has. The physicists are incapable of adequately describing the positioning, therefore "order" of the particles. We can either conclude that the particles have no inherent order, because the order cannot be determined by the human techniques, or we can conclude that they have an order, but other principles, and a higher intelligence, are required to figure out the order. As I explained to you already, (which you've left out of your inflammatory interpretation), is that the latter choice is the rational choice.

    Therefore I reaffirm my accusation, that you are intentionally misinterpreting what I write for the sake of making it appear as contradictory, instead of putting any effort into trying to understand it. This is very consistent with my observations of your mode of operation at this forum.
  • Hole in the Bottom of Maths (Video)
    In that last sentence, I merely say that it seems to me that when we make correct computations in arithmetic, we can take the results as true.TonesInDeepFreeze

    Strictly speaking, when we make correct computations in arithmetic, the results are logically valid. Following correct procedure results in a valid conclusion. Do you recognize the commonly held distinction between true and valid? A valid conclusion is not necessarily true, because it requires also that the premises are true. If we hold that axioms (as premises) are neither true nor false, or that truth and falsity is not relevant to axioms, then we cannot claim that correct computations provide us with truth.

Metaphysician Undercover

Start FollowingSend a Message